

Farmers' Risk Perception & Beliefs about Pesticide Reduction

A Framed Field Experiment

Paolo Crosetto, Ivan Mitrouchev and Mahdi Mekedem

REECAP CBYC Seminar – Nov 25th, 2025

Usual assumptions

In this literature, we often assume

- farmers' pesticide use decisions are **decisions under risk**
- We can measure Risk attitudes via behaviroal tools
- overtreatment possibly **driven by risk attitudes**

By measuring risk attitudes precisely, we can identify one of the causes of pesticide use and help design a reduction policy. But in reality

But in reality...

- Our tools have limited external validity
- Farmers face many **constraints**
- Pesticide use is often **not** a choice!
- Farmers **know much more than we do** about their farm

We chose to build a protocol that is as **contextualized** as possible; we mobilize our behavioral knowledge within the constraints of farmers' activity.

We chose
high external and contextual validity
but
low to no generalizability

We chose
high external and contextual validity
but
low to no generalizability
(it's fine: we have no power anyway)

Research questions

1. How do farmers **perceive** the risk of attack?
2. How do these perceptions influence the **amount of pesticides** they apply?
3. What role does **information** (data on attack risk) play in shaping their decisions?
4. Can these **insights** be used to design effective **policies** for pesticide reduction?

Two key challenges for our study

Descriptive: Which role for risk attitudes in farmers' reluctance to reduce pesticides?
(FAST WP1)

- Risk **perception**: do they estimate pest risk correctly?
- **Beliefs**: quantity and quality of yields conditional on treating/not treating
- Are they responsive to “objective” external **information**?

Two key challenges for our study

Descriptive: Which role for risk attitudes in farmers' reluctance to reduce pesticides?
(FAST WP1)

- Risk **perception**: do they estimate pest risk correctly?
- **Beliefs**: quantity and quality of yields conditional on treating/not treating
- Are they responsive to “objective” external **information**?

Normative: Potential for the design of more effective behavioral public policies.
(FAST WP4)

- Nudge, boost, information provision, advice... **accounting for beliefs**...

Experiment within the ANR project **FAST**

- Pesticides: environmental and health risks
- Public policies Ecophyto (I, II, II+) not very effective
- Literature on standard incentives (taxes, subsidies, price regulation)
[Femenia and Letort \(2016\)](#), [Finger et al. \(2017\)](#), [Pelaez et al. \(2013\)](#)
- Behavioral literature
[Chèze et al. \(2020\)](#), [Bontemps et al. \(2021\)](#), [Couture et al. \(2024\)](#), [Schaak et al. \(2024\)](#)
 - Decontextualized choices – or contextualized via DCE
 - No *focus* on beliefs: only on risk preferences
 - No *focus* on information provision

The experiment

The general methodological choices

- **Risk tasks have little external validity:** it is up to *us* to innovate
- **Farmers don't have much choice:** it is up to *us* to find the right context
- **Farmers know more than I do:** it is up to *us* to learn

The general methodological choices

- **Risk tasks have little external validity:** it is up to *us* to innovate
- **Farmers don't have much choice:** it is up to *us* to find the right context
- **Farmers know more than I do:** it is up to *us* to learn

We chose to build a protocol that is as **contextualized** as possible; we mobilize our behavioral knowledge within the constraints of farmers' activity.

General spirit of the experiment: a **vignette** study

For a precise situation where the farmer decides **if and how much** to treat, we will:

1. Measure their **risk perception** in the situation
2. Measure their **beliefs** regarding quantity/quality losses if impacted and untreated
3. Measure their **willingness to treat** as a function of **pesticide price**
4. Provide **external expert information** on attack risk
5. Measure a **second time** their intention to treat (conditional on price)

General spirit of the experiment: a **vignette study**

For a precise situation where the farmer decides **if and how much** to treat, we will:

1. Measure their **risk perception** in the situation
2. Measure their **beliefs** regarding quantity/quality losses if impacted and untreated
3. Measure their **willingness to treat** as a function of **pesticide price**
4. Provide **external expert information** on attack risk
5. Measure a **second time** their intention to treat (conditional on price)

+ **Questionnaire** about the farmer's profile
(socio-demo, farm size, etc.)

But we need a precise choice situation!

We need a situation where:

- the farmer truly has a choice
- there is a real economic stake
- the situation is ambiguous: treating vs not treating are both viable
- farmers may overtreat due to risk perception
- information provision could reduce pesticide use
- the crop is widespread enough to matter

But we need a precise choice situation!

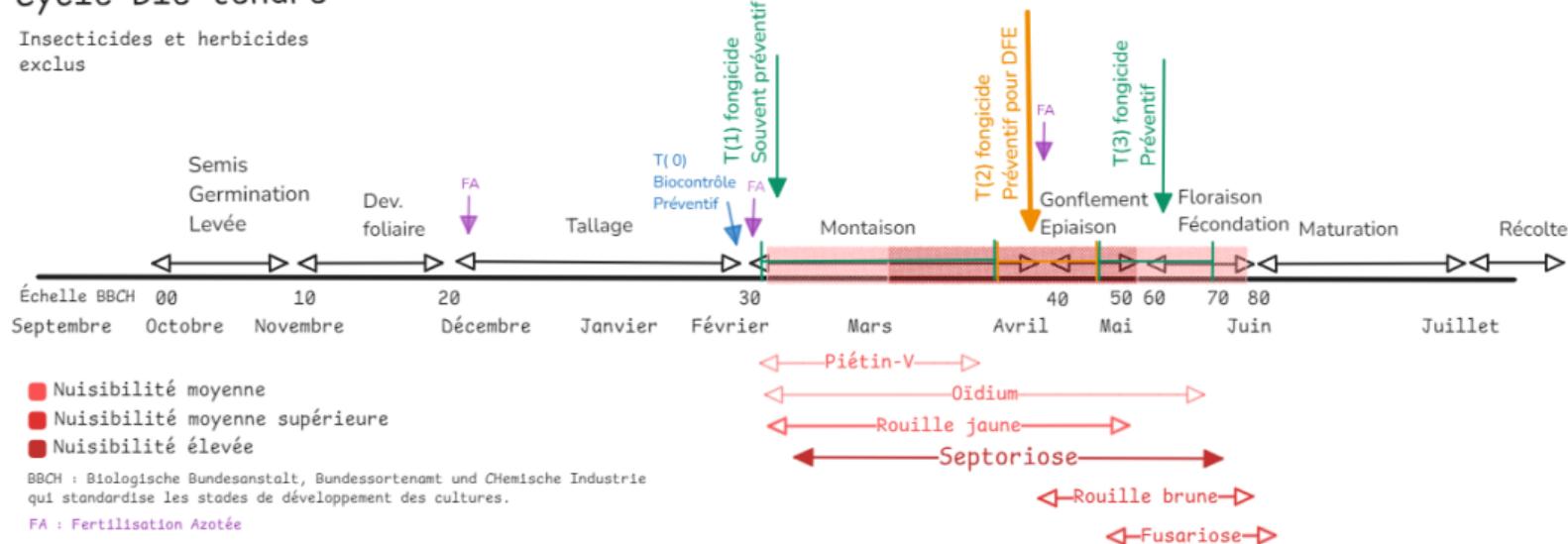
We need a situation where:

- the farmer truly has a choice
- there is a real economic stake
- the situation is ambiguous: treating vs not treating are both viable
- farmers may overtreat due to risk perception
- information provision could reduce pesticide use
- the crop is widespread enough to matter

Fungicides in soft wheat

Quick overview of pesticides in wheat: fungicides

Fungicides target different diseases at each stage (T_1, T_2, T_3):


- Fungicide at T_1 impacts 4–15% of the yield per hectare ($\sim 5\text{--}18\%$)
- Fungicide at T_2 combats a major disease: impacts at least 15% of yields
- Fungicide at T_3 is preventive: reduces quality (humidity, temperature). If farmers can skip it, they do

Translated into our economist language:

- *Intertemporal* and *risky* decision-making across three points in time
- Farmer objective: maximize yield under constraints (pesticide price, uncertain environment)

Cycle Blé tendre

Insecticides et herbicides exclus

Contextualized choice situations – vignettes

Fictional scenario based on a real case: a critical moment when the farmer must decide how much pesticide to apply depending on perceived attack risk.

Variables used to build scenarios:

- previous week's weather + next week's forecast
- yield potential: high, medium, low
- wheat price
- varietal sensitivity: rather resistant or not
- previous crop: maize, ...
- market outlet: human, animal...

These variables are manipulated to observe behavior across sufficiently diverse scenarios.

Overview of choice situations

Table 1: Scenarios and expected behavior

Treatment	Number of scenarios	Expected behavioral outcome
T_1 (early stage)	4	1 no treatment
		1 full treatment
		2 heterogeneous behaviors
T_3 (late stage)	4	1 no treatment
		1 full treatment
		2 heterogeneous behaviors
Total	8	—

Scenarios are block-randomized: first T_1 , then T_3 .

It is May 27, in Île-de-France, at the beginning of the phenological stage.

Weather from the previous week

Date	Weather	Rainfall (mm)	Humidity (%, min/max)	Temperature (°C, min/max)
Wed 20		0	45 / 72	12 / 20
Thu 21		5	65 / 88	13 / 19
Fri 22		1	50 / 80	11 / 18
Sat 23		8	70 / 94	14 / 21
Sun 24		0	40 / 75	13 / 22
Mon 25		3	55 / 83	12 / 18
Tue 26		2	52 / 81	11 / 19

Weather forecast for the next week

Date	Weather	Rainfall (mm)	Humidity (%, min/max)	Temperature (°C, min/max)
Wed 28		0	42 / 74	12 / 21
Thu 29		2	50 / 82	11 / 19
Fri 30		4	60 / 87	13 / 20
Sat 31		7	72 / 95	14 / 22
Sun 1		0	38 / 71	12 / 23
Mon 2		1	48 / 78	11 / 18
Tue 3		3	58 / 84	13 / 19

Yield potential medium

Wheat price €200/ton

Varietal sensitivity moderately sensitive

Previous crop maize

Tillage no plowing, residues on the surface

Treatment history (T_3 only)

- T_1 : adjusted dose (~ 0.7 L/ha of recommended dose)
- T_2 : full dose (1 L/ha)

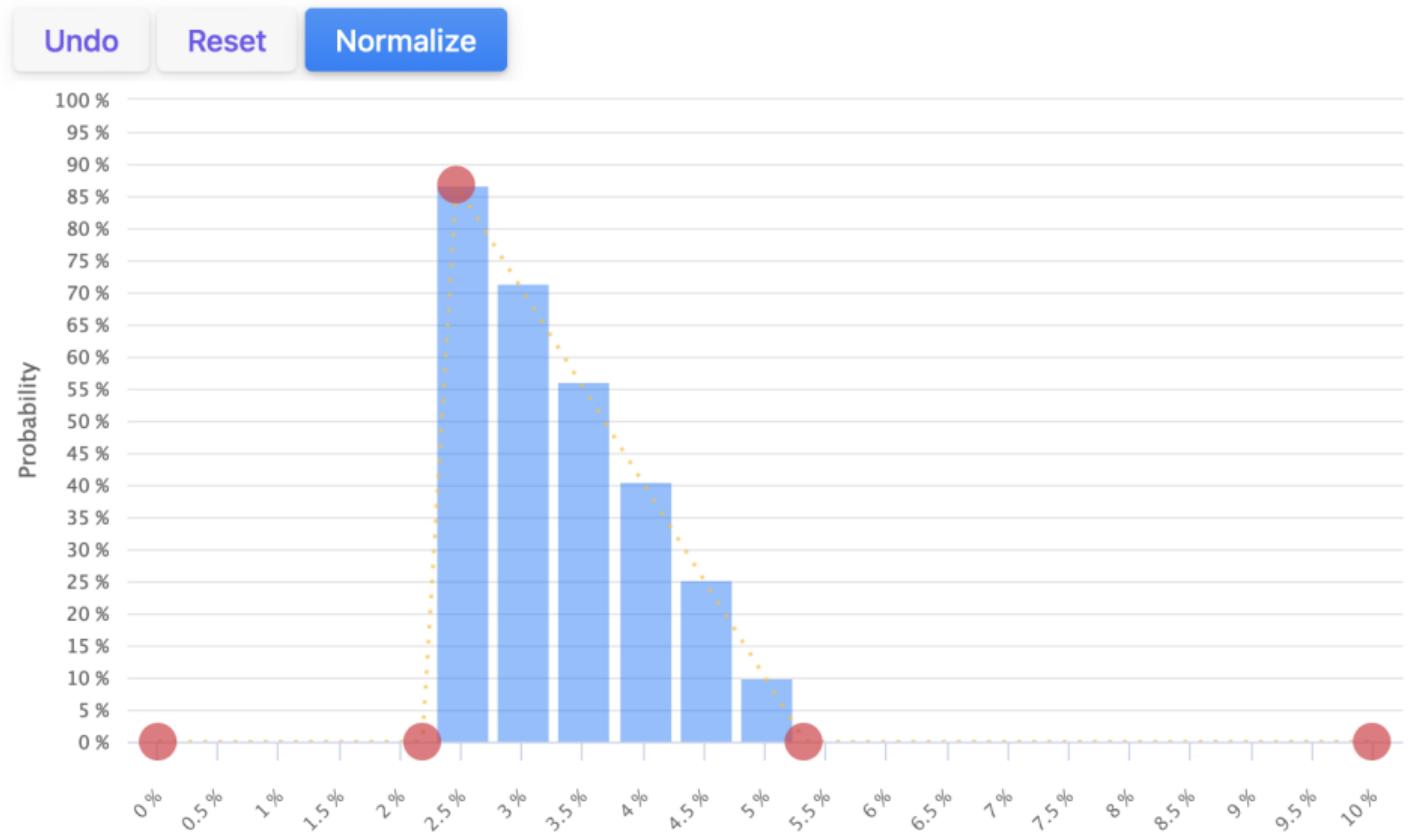
Market outlet animal feed

1. Risk perception and ambiguity preferences

Given this information, please evaluate the risk of an attack over the next 7 days by placing the cursor on the scale:

In this scenario, please indicate the dose of fungicide such as Prosaro (Prothioconazole-based) you would apply (select 0 L/ha if none):

0 L/ha	≤ 0.5 L/ha	0.7 L/ha	1 L/ha	1.2 L/ha


2. Beliefs about uncertain events

- T_1 scenarios: distribution of expected yield *quantity* (tons/ha), based on the farmer's declared dose
- T_3 scenarios: distribution of expected *quality*, based on the declared dose

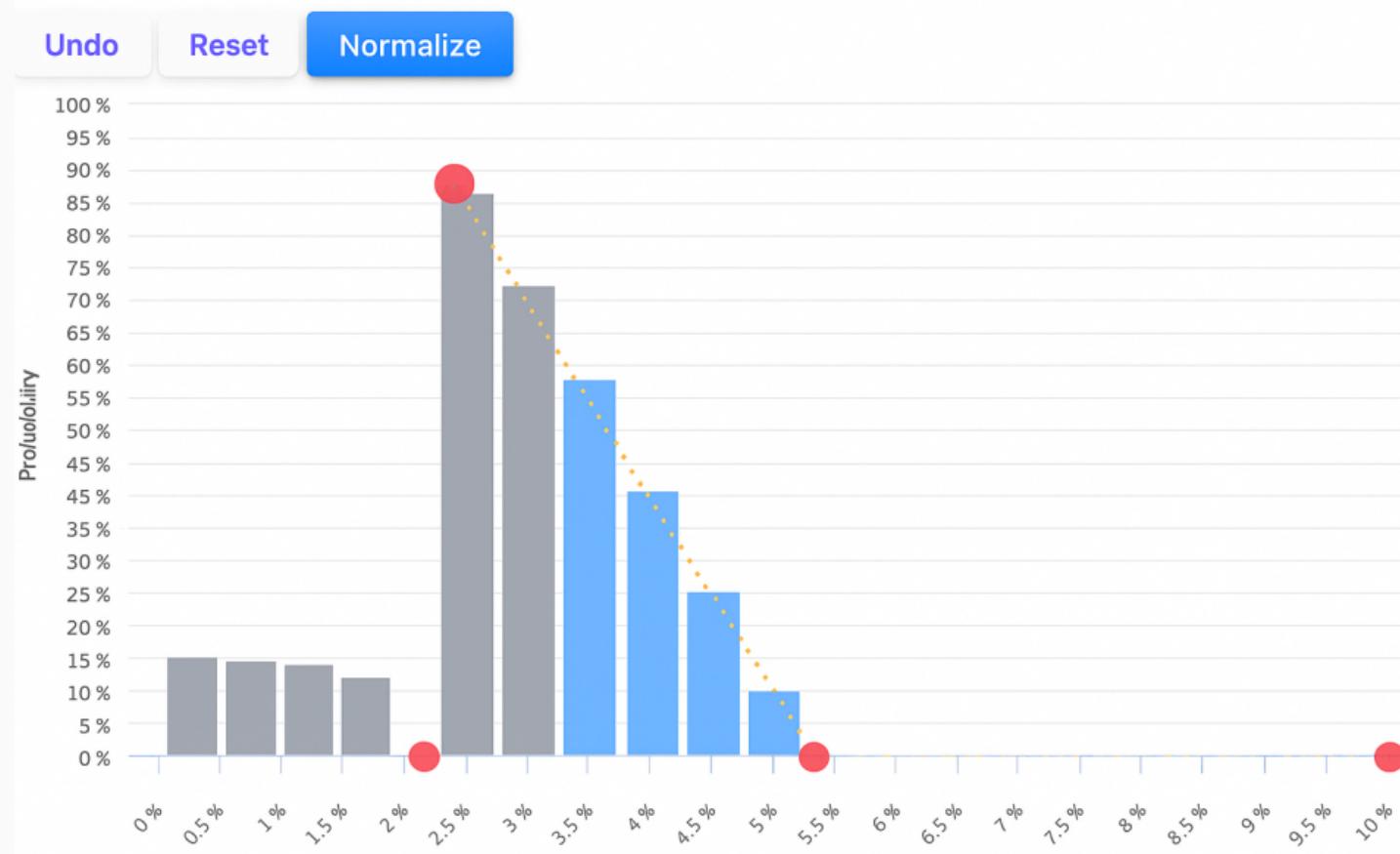
Belief elicitation tool:

- Click-and-Drag (Crosetto and de Haan 2023)
- interface link [here](#), or screenshots in the following slides

Predict using the interface: what will the **inflation** in the **Euro Area** in **2023** be?

2. Beliefs about uncertain events

Subjects who chose > 0 L/ha have a second belief elicitation task:


- Counterfactual case where pesticide dose = 0 L/ha

This addresses a key research question:

- Do farmers tend to *overestimate* attack risk?

(Screenshot on next slide)

Predict using the interface: what will the inflation in the Euro Area in 2023 be?

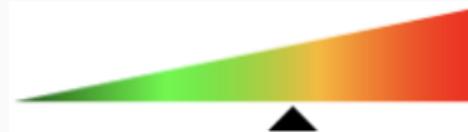

3. Price elasticity of pesticide use

Table 2: Pesticide dose by price

Price (€/ha)	0 L/ha	<0.5 L/ha	0.7 L/ha	1 L/ha	1.2 L/ha
15					
20					
25					
30					
35					
40					
45					

4. Information provision

Here is the attack risk estimated by Arvalis:

Note: the exact illustration will be specified later.

In this scenario, please indicate the dose you would apply (select 0 L/ha if none). Treatment concerns a fungicide such as Prosaro (Prothioconazole-based). I would apply:

0 L/ha	≤ 0.5 L/ha	0.7 L/ha	1 L/ha	1.2 L/ha

+ their confidence in the information provided by Arvalis (0–10 Likert scale)

What do we do with the data?

perception descriptive risk perception, comparison with experts

beliefs descriptive expected impact of treatment, comparison with experts

Price list potential impact of pesticide taxes given beliefs

Info reaction of (1) and (3) to information, potential behavioral change

The experiment

Subjects: $N \approx 100$ soft-wheat farmers

Recruitment: *Agropithiviers*, farmers' cooperative in Pithiviers (Centre-Val de Loire)

Incentive: flat payment ($\sim \text{€}20$), no incentive on decisions due to contextualization

Format: online, or possibly in-person (tablet sessions in Pithiviers)

Duration: $\sim 1\text{h}$

Test version of interface: end of 2025, developer: Émilien or Ismaël

Sessions: early 2026

Thank you for your feedback