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Let’s play!

please go to https://paolocrosetto.aidaform.com/expert-template-risk-taking-test
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What’s on the menu?

1. Risk attitudes: what are they? Why do they matter?

2. Risk elicitation: How do we measure risk attitudes?

3. Does it work? A meta-analysis of elicited risk attitudes

4. Proceeding by FIAT – Fix it Again, Tony!

• measurement error

• task specific bias

5. Changing paradigm

• layers of uncertainty

• risk perception

• cognitive turn
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1. What are risk attitudes?



Risk in real life

4



Risk in psychology

The act of implementing a goal-directed option qual-
ifies as an instance of risk taking whenever two things
are true: (a) the behavior in question could lead to
more than one outcome and (b) some of these out-
comes are undesirable or even dangerous. In essence,
then, risk taking involves the implementation of op-
tions that could lead to negative consequences.
(Byrnes et al 1999)
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The state of the art in psychology

Risk loosely defined as probability of harm

Focus on questionnaires and intuitive tasks

• Questionnaires:

• directly ask

• over different domains

• tackle risk perception

• Tasks

• hand in cold water

• card/gambling tasks

Metrics of success: convergent validity + predictive validity
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Risk in economics

How do people make decisions given a probability
distribution over outcomes?

Key assumptions:

• Constant over time (preferences are hardwired, in a sense)

• Constant across domains.

• Further (usually parametric) assumptions on the utility model (EUT, PT. . . )
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Different layers of uncertainty

Risk

10 100 1000

50% 10% 40%

Ambiguity

10 100 1000

50% 50%

Deep (Knightian) uncertainty

10 ?? 1000 ?? ...

50% 30% ?? 8



The expected utility framework
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The expected utility framework
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The state of the art in economics

Risk formally defined as uncertainty over outcomes

Focus on decontextualized tasks

• The lottery paradigm

• incentives

• risk task = choice over lotteries

• different formats, cover stories, contexts

• strong theoretical underpinning

• estimation of utility functions (⇒ models)

Metric of success: internal validity (task ⇐⇒ theory)
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2. Measuring risk attitudes



Why measure?

• Risk attitudes are important throughout life

• Very important for policy (risk management, health hazards, insurance...)

• Even mandatory in some fields (finance)

• Might be one of the underlying reasons for different behavior/outcomes of

groups/individuals (e.g. gender)
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We will need some assumptions. . .

Existence as a psychological trait

Stability risk prefernces must be stable. This stability could hold

• overall: just one risk attitudes for all domains

• over domains: e.g. lots of gambling but no career risks

• always: same risk attitude from cradle to grave

• over reasonable periods: child/young/middle-aged/old

Consistence if asked several times, roughly same answer
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. . . and some methodological choices

Risk attitudes are elicited in different ways:

• infer from real world data vs. build ad-hoc choices

• survey measures via questionnaires vs. incentivized tasks

• binary choices + structural model vs. structured choice lists

• elicitation by descrption vs. by experience

Focus on ad-hoc structured tasks elicited by description:

Risk Elicitation Tasks (RET)
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A good RET should be...

Accurate: theoretically sound, not ambiguous, unbiased...

Relevant: predictive of real-life behavior

Handy: easy to implement, understand, deploy (lab, field)

Detailed: delivering a fine estimate of risk attitudes (many categories);

Clean: with low noise and allowing control
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...and of course there are trade-offs
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...and of course there are trade-offs

19



Experiments: internal validity
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Experiments: external validity
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Some RETs
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Tasks from psychology

Psychologists have come up with a list of risky tasks that are tailored to the specific

needs of each manipulation / experiment / theory:

• left-turn in high traffic

• hand in freezing water

• guessing given little information

• (various forms of) gambling

• playing (various forms of) card games

• Deal or No Deal game

• . . .

(see Byrnes JP, Miller DC, Schafer WD (1999) Gender differences in risk taking: A meta-analysis.

Psych. Bull. 125(3):367–383. for a list of tasks seen from a gender perspective)

22



Tasks from psychology: pros and cons

Pros

• external validity

• real worlds behavior

• losses

Cons

• no or little theory

• generalizability dubious
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Questionnaires: SOEP

How likely are you to take risks in general, one a scale from 0 (not
taking any risks) to 10 (taking many risks)?
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Questionnaires: DOSPERT

Domain Specific Risk Taking Scale

• 6 domains: investing, gambling, health/safety, recreational, ethical, and social

• 1 to 7 scale: how likely are you to engage in X?

Examples:

• Riding a motorcycle without a helmet.

• Engaging in unprotected sex.

• Investing 10% of your annual income in a moderate growth diversified fund.
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Questionnaires: pros and cons

Pros

• external validity

• real world behavior

• ”near” to the obect of interest

Cons

• map - territory

• results not suitable to be plugged into models

• averaging over items is a dubious exercise

• (what do you think)?
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Early tasks from economics: auctions

In the 1970s and 80s it was proposed to use auctions to elicit risk attitudes.

• you bid for an object worth 10 euro

• against a computerized opponent ∼ U [0; 10]

What should you do?

• Your earnings are

Π =

10− bid if bid ≥ U(0; 10)

0 if bid < U(0; 10)

• bid 1 ⇒ get 9 with probability 10%, and so on...

• optimal strategy if risk neutral: bid = 10/2 = 5

• if risk averse: bid more.

risk aversion = overbidding
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Eliciting risk attitudes via auctions: pros and cons

Pros

• robust theory

• incentivized – monetary consequences

Cons

• much can be going on other than risk aversion

• lots of instructions

• feels very artificial
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The workhorse of economics RETs: choice over lotteries

Under EUT, there is one risk attitude and can be identified with one continuous

certainty equivalent choice or a small set of lottery choices.

Natural for economists under EUT to directly use lotteries to elicit risk attitudes.

• lotteries are simple objects

• incentivizable

• less bulk than auctions

• portable and easy to ask

• to allow for noise, just ask many lottery choices
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RETs, I: Holt and Laury

Ten binary lottery choices – risk attitude as switching point

Risk neutral should switch after 5 choices. > 5 safe → risk averse
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Holt and Laury: pros and cons

Pros

• robustly linked to EUT

• incentivized – monetary consequences

Cons

• might be difficult to parse by subjects

• (what do you think?)
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RETs, II: Binswanger

A single choice among 50-50 lotteries – chosen lottery is played.

Risk neutral should choose lottery 5. Extreme risk aversion to choose lottery 1.
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Binswnanger: pros and cons

Pros

• robustly linked to EUT

• incentivized – monetary consequences

• easier than HL

Cons

• only 50-50 lotteries

• risk lovers?

• (what do you think?)
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RETs III: Certainty equivalent price lists

Risk-neutral chooses 50.
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RETs III: Certainty equivalent price lists

Risk-neutral chooses 50.
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CEPL: pros and cons

Pros

• robustly linked to EUT

• incentivized – monetary consequences

Cons

• Might be easier to parse than HL

• in a way, a bridge between HL and Binswanger

• central bias?

• (what do you think?)
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RETs,IV: Gneezy and Potters

Risk-neutral should invest all, as E (risky) = 1.25 > 1.
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Gneezy and Potters: pros and cons

Pros

• robustly linked to EUT

• incentivized – monetary consequences

• investment context

Cons

• only one lottery, sensitive to parameter choice

• risk lovers?

• (what do you think?)
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RETs, V: Balloon

Inflating a balloon with increasing probability of explosion

Risk-neutral should stop halfway – but not enough information
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Balloon: pros and cons

Pros

• intuitive

• might be fun – might be related to gambling

Cons

• ambiguity!

• serial correlation

• (what do you think?)
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RETs, VI: the Bomb Risk Elicitation Task

Figure 1: The BRET interface at the start of the experiment
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BRET: interface

Figure 2: The BRET interface after 16 seconds
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BRET: under the hood

• Theoretically, the task amounts to choosing the preferred among 101 lotteries.

• Each lottery is characterized as

Lk =


0 k

100

k 100−k
100

• The 101 lotteries are all summarized by the parameter k ...

• ...that is also governing probabilities.

• Example: at k = 20, L = {20% : 0 ; 80% : 20}
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BRET: solution for the expected value maximizer

The expected value is maximized at k∗ = 50.

Assuming a power CRRA utility function x r , the optimal stopping point is:

k∗ = 100
r

1+ r
.
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BRET: Risk averse subject

The expected value is maximized at k∗ = 50.

Assuming a power CRRA utility function x r , the optimal stopping point is:

k∗ = 100
r

1+ r
.
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BRET: Risk averse subject

The expected value is maximized at k∗ = 50.

Assuming a power CRRA utility function x r , the optimal stopping point is:

k∗ = 100
r

1+ r
.
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BRET: Risk lover subject

The expected value is maximized at k∗ = 50.

Assuming a power CRRA utility function x r , the optimal stopping point is:

k∗ = 100
r

1+ r
.
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k∗ = 100
r

1+ r
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BRET: pros and cons

Pros

• intuitive (?)

• might be fun – might be related to gambling

• strongly related to theory

Cons

• artificial

• might be misunderstood

• (what do you think?)
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3a. Do measures work? your data



Let’s have a look at your data. . .

Head over to R!
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3b. Do measures work?

meta-anaysis



Our forefathers: Slovic (1962)
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METARET

Meta-Analysis of Risk Elicitation

Tasks

• data from experiments worldwide

• convergent & predictive validity

• preregistration on OSF

• data & scripts on gitHub

• live exploration on shiny app

Explore the data!
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METARET assumptions: CRRA (à la Wakker)

u(x) = x r

• simple

• captures risk aversion

• makes different tasks comparable
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How to interpret parameter differences
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Low consistency across tasks
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Low consistency within tasks
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Convergence: tasks
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Convergence: questionnaires
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Tasks ⇐⇒ Questionnaires
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Convergent validity: more evidence

Figure 3: Pedroni et al. Nature Human Behavior 2017
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Predictive validity: more evidence

Figure 4: Frey et al. Science Advances 2017
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4. Fix It Again, Tony!
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Potential fixes

• hypothetical bias

• measurement error

• task specific bias
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Hypothetical Bias
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Hypothetical bias: subjects love messing with data
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But again...
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Task-specific error
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Mapping choices to r : risk levels
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Clean test: simulations

How does the mere mechanics of each task affect the outcome?

• Simulation exercise:

• Generate 100k virtual agents

• for each agent, r ∼ N(0.7, 0.3)

• let the agents play each of the 4 tasks

• collect results, run statistics

• analyze the retrieved r̂

• a good task should be able to recreate the starting distribution, if no error.
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Putting the cart before the horse: simulations
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Simulations, II

Three types of simulations:

1. Deterministic: virtual subjects play according to their true r

2. Random parameter model:

• for each agent, rn = r + ε, ε ∼ N(0, µ)

• that is, the agent deviates from her true preferences with a white noise

• µ = 0.3 or 0.6

3. Trembling hand: behaviorally random:

• a 10% share of subjects just chooses uniformly random

• on the task space: i.e., same likelihood of switching in row 1 as in row 10 in HL.

• models both error and (extreme) frame effects
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Does all this explain all measured task differences?

• No

• Some of the differences across task are accounted by mechanics.

• especially for EG/BRET

• others are not, especially for GP.

• What else might be driving the differences?
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Pure noise: measurement error
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Noisy preferences lead to measurement error. How do we fix it?

The experiment-intensive way:

Average over different measures / questionnaires

The economietrics-intensive way:

Structural modeling and get estimate + theory + noise
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The elbow-grease way: averaging over tasks

For RETs:

Menkhoff & Sakha, Estimating risky behavior with multiple-item risk measures , Jo

Econ Psy 2017

For questionnaires:

Beauchamp et al., The psychometric and empirical properties of measures of risk

preferences, JRU 2017

For both:

Crosetto et al, Measurement Error in Risk Elicitation, WP 2025 (maybe)
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The stat-intensive way: structural modeling

• Assume a theory (e.g., EUT, PT, ...)

• Set up the equations describing the theory

• Link the equations to the data

• Estimate parameter via maximum likelihood

• Let parameters vary on demographics

• Let parameters depend on noise
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Explaining structural modeling: Holt and Laury
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Explaining structural modeling: Holt and Laury

• assume U(x) = x r

• assume subjects evaluate left and right lotteries EU(L); EU(R)

EU(L) =
1

10
· (4r ) + 9

10
· (3.2r )

EU(L) =
1

10
· (7.7r ) + 9

10
· (0.2r )

• subjects compare utilities and choose accordingly:

Decision =

{
L if EU(L) > EU(R)

R if EU(L) < EU(R)
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Adding noise to the model

There are two main ways to add noise:

1. Random utility model (Fechner error)

EU(x) = x r

Prob(L) = Prob(EU(L)− EU(R) + ε > 0);

2. Random parameter model

EU(x) = x r+ε

Prob(L) = Prob(EU(L)− EU(R) > 0).
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You can play around with error structures

1. probit

ε ∼ N(0, µ2)

Pr(L) = Φ(
EUL − EUR

µ
).

2. logit

ε ∼ Λ(0, µ)

Pr(L) =
1

1+ e
− 1

µ (EUL−EUR )
.

3. Luce / HL

ε ∼ Λ(0, µ)

Pr(R) =
EU

1
µ

R

EU
1
µ

L + EU
1
µ

R

.

92



MLE, some results (Crosetto & Filippin, ExEc 2015)

Log-likelihood Coefficient Estimate St.Err. p-value

HL -391.25

r .427 .064 .000

rfemale -.061 .060 .310

µ .433 .090 .000

EG -194.62

r .694 .035 .000

rfemale -.262 .057 .000

µ .206 .020 .000

CGP -1546.79

r .863 .014 .000

rfemale -.093 .023 .000

µ .010 .001 .000

Balloon -2243.81

r 1.13 .066 .000

rfemale -.103 .042 .013

µ .345 .078 .000

BRET -2584.71

r .696 .089 .000

rfemale .034 .049 .488

µ .104 .037 .006
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Why you should never run a RUM

• P(safe) monotonic increasing in risk

aversion

• . . . but it doesn’t!

• Why?

• limx→−∞ EU(L)− EU(R) = 0 < ε

• Working on ∆EU assumes cardinality

Don’t run RUMs

Apesteguia and Ballester, JPE 2018
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Potential fixes: how are we doing?

• hypothetical bias

• measurement error: helps marginally

• task specific bias: helps marginally
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5. Deeper fixes: changing paradigm



Are we looking at the problem the right way?
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Potential changes of paradigm

• uncertainty layers: risk, ambiguity, or deep uncertainty?

• risk perception

• have we got the right theory? A cognitive turn
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Layers of uncertainty: risk, ambiguity, deep. . .
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Remember? Different layers of uncertainty

Risk

10 100 1000

50% 10% 40%

Ambiguity

10 100 1000

50% 50%

Deep (Knightian) uncertainty

10 ?? 1000 ?? ...

50% 30% ?? 97



Have we got the right representation of risk?

In the lab: ”risk”

• known probabilities

• known set of outcomes

• no surprises

• learn by description

• small stakes

• no losses

Out of the lab: ”risk”

• fuzzy probabilities

• fuzzy set of outcomes

• surprises

• learn by experience

• high stakes

• losses

Quite the gap to mind – and bridge
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The simplest possible task: binary choice, safe vs risky

”deck contains up to 6 different positive or negative values”
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Repeated choices: more information (sampling + description)

Deep U: probabilities & outcomes unknown

Ambiguity: probabilities unkown, outcomes known

Risk: probabilities & outcomes known
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Our external validity setup

The Daily Reconstruction Method
Anonymized, self-reported list of daily active decisions under risk, irrespective

if the risk was taken or avoided, filled at home every evening over 14 days.

For each activity:

• Domain: health, safety, recreation, drive, financial, ethics, social

• Perception: of the risk avoided or taken (-10..0..10)

• Outcomes: positive (0..10) and negative (0..-10) consequences

• Probabilities: positive and negative consequences (0..100%)
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Revealing information increases risk taking

Deep significantly lower than all others (p < 0.001)

Risk significantly higher than all others (p < 0.001)
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This hides significant heterogeneity across subjects

Deep mainly composition effect of separate groups

Shift more continuous than it seems
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This hides significant heterogeneity across subjects
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Correlations task ⇐⇒ external measure of risk attitudes

• Peak around ambiguity, but probably underpowered

• Risk and Deep do not correlate significantly with external measure

• Ambiguity layer does
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Risk perception
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Do subjects find our tasks risky? Don’t ask, don’t tell

We don’t know because we just plainly assume they do!

• Economists assume subjects share the same risk definition

• namely:

• risk as a distribution of probability over outcomes

• EV as the average across all possible states of the world

• risk aversion as diminishing marginal utility of money

• subjects care about variance

• but subjects think of risk as probability of a loss
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Experimenting on risk perception

Holzmeister et al (Man Sci 2021)

• Rate descriptions of asset returns

• i.e., perceived risk

• ∼7000 subjects

• including ∼2500 traders
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Risk perception not driven by variance (but skewness)
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Best-fitting definition of risk: probability of a loss
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Competing theories: noisy coding & cognitive approach
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What if risk aversion is not?

We have so far assumed EUT. But it’s no more the only game in town

• noisy coding: risk aversion ∼ risk neutraility + the way we see the world

• Logarihtmic number perception ∼ risk aversion (Khaw et al. 2021)

• Loss aversion and probability weighting ∼ cognitive artifacts (Vieider 2024)

• Choice under risk ∼ choice under complexity and confusion (Oprea 2024)
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Summing up. . .



Summing up

The quest for a good risk measure

• there is no one good way of eliciting risk

• the field doe snot produce reliable estimates

• in practical applications, lots of trade-offs and less-worse dilemmas

But!

• Research is ongoing!

• If you just need a control – probably just ask

• If you need a parameter: use a low-bias task (as HL, or BRET)

• If you need external validity: beware of risk perception issues!

• . . . and maybe Risk Aversion is simply not!
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