
Nice tables in R
This lecture will allow us to explore the world of nice tables in R.

We will first produce a table, then output it in a “raw”, pure text format, and then make it fancier in an html-compliant nice
format. Note that most of the formatting we’ll do here will not be available in pdf or docx formats. To format nice tables in
these other formats, you have to use other packages such as kableExtra or huxtable that we will not directly discuss
here.

We will deal with three types of tables:

tables that are the results of computations you run. We will use gt
summary tables of statistical models. We will use modelsummary
summary tables detailing stats of whole datasets. We will use modelsummary

So first let’s install the packages and then call the libraries

Generic tables – i.e. results of computations

We start by creating a simple table of summary statistics as we have done earlier in the course, using our usual tidyverse
tools – filter , mutate , group_by , summarize…

Using the mpg built-in dataset, make a table of the mean miles per gallon when driving within a city (cty) and on a
highway (hwy) for each class, in 1999 and 2008. First use our usual tidyverse tools to create a simple text table.

`summarise()` has grouped output by 'class'. You can override using the
`.groups` argument.

A tibble: 14 × 4
Groups: class [7]
 class year mean_cty mean_hwy
 <chr> <int> <dbl> <dbl>
 1 2seater 1999 15.5 24.5
 2 2seater 2008 15.3 25
 3 compact 1999 19.8 27.9
 4 compact 2008 20.5 28.7
 5 midsize 1999 18.2 26.5
 6 midsize 2008 19.3 28.0
 7 minivan 1999 16.2 22.5
 8 minivan 2008 15.4 22.2
 9 pickup 1999 13 16.8
10 pickup 2008 13 16.9
11 subcompact 1999 21.6 29
12 subcompact 2008 18.9 27.1
13 suv 1999 13.4 17.6
14 suv 2008 13.6 18.6

The output is text-only if you run this in a console; an html widget if you run it in the chunk; and again an ugly text-based
copy of what you’d see in the console if you Render your .qmd file.

Please check all this.

Also, look at the object in the Environment pane. The object is a data.frame as we know it so far – just raw data.

Now try to make it less ugly by using gt – first with a simple call to gt() .

Introduction to R – L7 – Tables

gt, for "great table", from the tidyverse developers
#install.packages("gt")

modelsummary, the best tool to table regressions and models
#install.packages("modelsummary")

library(gt)
library(tidyverse)

Exercice 1: mpg

table_exo1 <- mpg %>%
 group_by(class, year) %>%
 summarise(mean_cty = mean(cty, na.rm = T),
 mean_hwy = mean(hwy, na.rm = T))

table_exo1

table_exo1_gt <- table_exo1 %>%
 gt()
table_exo1_gt

year mean_cty mean_hwy

2seater

1999 15.50000 24.50000

2008 15.33333 25.00000

compact

1999 19.76000 27.92000

2008 20.54545 28.72727

midsize

1999 18.15000 26.50000

2008 19.33333 28.04762

minivan

1999 16.16667 22.50000

2008 15.40000 22.20000

pickup

1999 13.00000 16.81250

2008 13.00000 16.94118

subcompact

1999 21.57895 29.00000

2008 18.93750 27.12500

suv

1999 13.37931 17.55172

2008 13.60606 18.63636

This is already better, both when looked at in the chunk and when rendered (try).

Note that gt automatically recognizes groups in your data.frame .

Look at the object in the Environment pane: it is a complex object (akin to the ggplot s we created along the course)

But what is gt ? Let’s dive deeper!

gt is a package to generate nice looking tables; it strives to be as general as possible and to allow customization of all
elements of a table.

A gt table is created by simply calling gt() on a data.frame. So you can make all the changes / computations you want
and then display those as a gt table by simply piping the object you created to gt() .

Get our dear old nycflights dataset, and create a table of min, mean and max (on the columns) departure delays for
each month (on the rows) for the 3 New York airports (on the columns). In other words, The table must look like this:

gt – g reat t ables

gt general structure and terminology

Exercise 2: NYCflights and gt

Then feed it to gt() to create a nice-looking HTML table. Check the result in pdf too. It doesn’t matter right now if you
don’t get it perfectly right.

Important: remember to use pivot_wider to create the columns you need out of your originally long format dataset.

`summarise()` has grouped output by 'month'. You can override using the
`.groups` argument.

A tibble: 36 × 5
Groups: month [12]
 month origin min_delay mean_delay max_delay
 <int> <chr> <dbl> <dbl> <dbl>
 1 1 EWR -21 14.9 1126
 2 1 JFK -17 8.62 1301
 3 1 LGA -30 5.64 478
 4 2 EWR -21 13.1 786
 5 2 JFK -22 11.8 747
 6 2 LGA -33 6.96 853
 7 3 EWR -22 18.1 443
 8 3 JFK -24 10.7 800
 9 3 LGA -25 10.2 911
10 4 EWR -21 17.4 545
ℹ 26 more rows

A tibble: 12 × 10
Groups: month [12]
 month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK
 <int> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 1 -21 -17 -30 14.9 8.62
 2 2 -21 -22 -33 13.1 11.8
 3 3 -22 -24 -25 18.1 10.7
 4 4 -21 -19 -21 17.4 12.2
 5 5 -20 -23 -24 15.4 12.5
 6 6 -19 -18 -21 22.5 20.5
 7 7 -18 -18 -22 22.0 23.8
 8 8 -17 -17 -26 13.5 12.9
 9 9 -23 -22 -24 7.29 6.64
10 10 -25 -18 -22 8.64 4.59
11 11 -22 -18 -32 6.72 4.68
12 12 -20 -43 -23 21.0 14.8
ℹ 4 more variables: mean_delay_LGA <dbl>, max_delay_EWR <dbl>,
max_delay_JFK <dbl>, max_delay_LGA <dbl>

min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA max_de

1

-21 -17 -30 14.905748 8.615826 5.641560

library(nycflights13)

1. generate the needed stats
exo2 <- flights %>%
 group_by(month, origin) %>%
 summarise(min_delay = min(dep_delay, na.rm = T),
 mean_delay = mean(dep_delay, na.rm = T),
 max_delay = max(dep_delay, na.rm = T))

exo2

2. realize it's in long format! use pivot_wider
exo2_wide <- exo2 %>%
 pivot_wider(names_from = origin, values_from = ends_with("delay"))
exo2_wide

3. realize we have a problem as nested column titles are NOT a thing in R
but we'll deal with that later
let's just feed it to `gt` right now
exo2_wide %>%
 gt()

min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA max_de

2

-21 -22 -33 13.067263 11.791355 6.961582

3

-22 -24 -25 18.102457 10.721825 10.232041

4

-21 -19 -21 17.400058 12.249059 11.508915

5

-20 -23 -24 15.366141 12.519432 10.630508

6

-19 -18 -21 22.470810 20.499729 19.296698

7

-18 -18 -22 22.035112 23.769262 18.995163

8

-17 -17 -26 13.493714 12.914358 11.244042

9

-23 -22 -24 7.290954 6.635776 6.207439

10

-25 -18 -22 8.636436 4.592556 5.309137

11

-22 -18 -32 6.723769 4.678464 4.767144

12

-20 -43 -23 21.026575 14.788352 13.588830

month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA

1 -21 -17 -30 14.905748 8.615826 5.641560

2 -21 -22 -33 13.067263 11.791355 6.961582

3 -22 -24 -25 18.102457 10.721825 10.232041

4 -21 -19 -21 17.400058 12.249059 11.508915

5 -20 -23 -24 15.366141 12.519432 10.630508

6 -19 -18 -21 22.470810 20.499729 19.296698

7 -18 -18 -22 22.035112 23.769262 18.995163

8 -17 -17 -26 13.493714 12.914358 11.244042

9 -23 -22 -24 7.290954 6.635776 6.207439

10 -25 -18 -22 8.636436 4.592556 5.309137

11 -22 -18 -32 6.723769 4.678464 4.767144

12 -20 -43 -23 21.026575 14.788352 13.588830

This is ok, better than text, but it’s still ugly and not what we want.

Luckily gt comes with a series of powerful functions to customize any aspect of a table!

Once you have a gt object, you can use some simple families of functions to customize the table.

4. uh oh we've got a problem -- gt recognizes groups! that's bad (here)... so

exo2_gt <- exo2_wide %>%
 ungroup() %>%
 gt()
exo2_gt

Customizing a gt object

tab_header tab_caption tab_footnote etc… deal with the different parts of the table

to change the format of the data (eg round numbers, good formatting of dates, etc…) you can use the family of
fmt_... functions. E.g. fmt_date to format dates, fmt_number to choose eg digit to round to, etc…

tab_spanner creates the “spanners”, i.e. the second- or third-level column labels.

tab_row_group controls variables used for grouping (gt automatically uses the groups of your df if you don’t tell it
not to, as we have seen, but this can be changed).

functions starting with cols_... allow you to change column behavior. For instance cols_label allows you to relabel
columns (important: in standard R, data.frames cannot have two columns with the same name; but with cols_label
this is no more a problem!), cols_merge merges data of two columns into one, Then you can change the alignment of
the columns, their width, etc…

You can add a summary across all rows with summary_rows

tab_style allows you to change the style & appearance of any cell, row or column

tab_options is similar to theme for ggplot , as it allows you to modify the look of single elements of a table.

Let’s call back the gt table we creatd in exercise 1. It has several problems: it’s too long, the number of digits shown
is not optimal; it has groups and we might not want that; the names of the columns are ugly, etc…

year mean_cty mean_hwy

2seater

1999 15.50000 24.50000

2008 15.33333 25.00000

compact

1999 19.76000 27.92000

2008 20.54545 28.72727

midsize

1999 18.15000 26.50000

2008 19.33333 28.04762

minivan

1999 16.16667 22.50000

2008 15.40000 22.20000

pickup

1999 13.00000 16.81250

2008 13.00000 16.94118

subcompact

1999 21.57895 29.00000

2008 18.93750 27.12500

suv

Exercices 3: let’s format nicely the table from Exo 1

table_exo1_gt

year mean_cty mean_hwy

1999 13.37931 17.55172

2008 13.60606 18.63636

Let’s try to make it look better using the extra tools of gt . Let’s:

add a title and subtitle
add a note telling the reader the source of the data
format numbers with just 2 decimal places, but not for the “year” variable (that would be dumb)
add a spanner on top of the cty and hwy columns
rename those columns to some more decent names

Mean miles per gallon in city and highway
by class of car and year of immatriculation

year

Mean miles per gallon

Within cities On highways

2seater

1999 15.50 24.50

2008 15.33 25.00

compact

1999 19.76 27.92

2008 20.55 28.73

midsize

1999 18.15 26.50

2008 19.33 28.05

minivan

1999 16.17 22.50

2008 15.40 22.20

pickup

1999 13.00 16.81

2008 13.00 16.94

subcompact

1999 21.58 29.00

2008 18.94 27.12

suv

1999 13.38 17.55

2008 13.61 18.64

Source: {mpg} built-in dataset, R

This is already better, but it is also the chance to revise the good old pivot_wider and pivot_longer functions. Can
we make the table wider, with year on the columns rather than rows? Let’s restart from the raw object and make it
wider, first

table_exo1_gt %>%
 # header: title and subtitle
 tab_header(title = "Mean miles per gallon in city and highway",
 subtitle = "by class of car and year of immatriculation") %>%
 # source of the table
 tab_source_note("Source: {mpg} built-in dataset, R") %>%
 # formatting: 2 digits (but for year)
 fmt_number(columns = -year, decimals = 2) %>%
 # spanner
 tab_spanner(label = "Mean miles per gallon", columns = c(mean_cty, mean_hwy)) %>%
 # nice names
 cols_label(mean_cty = "Within cities", mean_hwy = "On highways")

wider_exo1 <- table_exo1 %>%
 pivot_wider(names_from = year, values_from = c(mean_cty, mean_hwy)) %>%
 ungroup()
wider_exo1

A tibble: 7 × 5
 class mean_cty_1999 mean_cty_2008 mean_hwy_1999 mean_hwy_2008
 <chr> <dbl> <dbl> <dbl> <dbl>
1 2seater 15.5 15.3 24.5 25
2 compact 19.8 20.5 27.9 28.7
3 midsize 18.2 19.3 26.5 28.0
4 minivan 16.2 15.4 22.5 22.2
5 pickup 13 13 16.8 16.9
6 subcompact 21.6 18.9 29 27.1
7 suv 13.4 13.6 17.6 18.6

Now let’s make it into a gt object and then make it nicer using all the tricks above. In particular we want to:

add a spanner for 1999 and one for 2008
rename nicely cty and hwy
2 decimal places
using tab_style , format the first column as bold

Miles per gallon, 1999 Miles per gallon, 2008

City Highway City Highway

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

Now let’s go back to exercise 2. Remember what we wanted? This

Also, remember what we’ve got? this

month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA

1 -21 -17 -30 14.905748 8.615826 5.641560

2 -21 -22 -33 13.067263 11.791355 6.961582

3 -22 -24 -25 18.102457 10.721825 10.232041

4 -21 -19 -21 17.400058 12.249059 11.508915

5 -20 -23 -24 15.366141 12.519432 10.630508

wider_exo1_cool <- wider_exo1 %>%
 gt() %>%
 # spanners
 tab_spanner(label = "Miles per gallon, 1999", columns = contains("1999")) %>%
 tab_spanner(label = "Miles per gallon, 2008", columns = contains("2008")) %>%
 # labels -- note that twice the same label is alright!
 cols_label(class = " ", mean_cty_1999 = "City",
 mean_hwy_1999 = "Highway", mean_cty_2008 = "City",
 mean_hwy_2008 = "Highway") %>%
 fmt_number(decimals = 2) %>%
 tab_style(style = list(cell_text(weight = "bold", transform = "capitalize")),
 locations = cells_body(columns = class))
wider_exo1_cool

Exercice 4: let’s format nicely the table from Exo 2

exo2_gt <- exo2_wide %>% ungroup %>% gt()
exo2_gt

month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA

6 -19 -18 -21 22.470810 20.499729 19.296698

7 -18 -18 -22 22.035112 23.769262 18.995163

8 -17 -17 -26 13.493714 12.914358 11.244042

9 -23 -22 -24 7.290954 6.635776 6.207439

10 -25 -18 -22 8.636436 4.592556 5.309137

11 -22 -18 -32 6.723769 4.678464 4.767144

12 -20 -43 -23 21.026575 14.788352 13.588830

Now you know how to turn that ugly table into the beautifully organized table we want! So as Nike once said, just do it.

Delay at departure for the 3 NYC airports

Month

Newark JFK La Guardia

min mean max min mean max min mean max

1 -21 14.91 1126 -17 8.62 1301 -30 5.64 478

2 -21 13.07 786 -22 11.79 747 -33 6.96 853

3 -22 18.10 443 -24 10.72 800 -25 10.23 911

4 -21 17.40 545 -19 12.25 960 -21 11.51 812

5 -20 15.37 878 -23 12.52 853 -24 10.63 533

6 -19 22.47 502 -18 20.50 1137 -21 19.30 803

7 -18 22.04 653 -18 23.77 1005 -22 19.00 898

8 -17 13.49 424 -17 12.91 508 -26 11.24 520

9 -23 7.29 486 -22 6.64 1014 -24 6.21 696

10 -25 8.64 702 -18 4.59 342 -22 5.31 390

11 -22 6.72 798 -18 4.68 636 -32 4.77 413

12 -20 21.03 896 -43 14.79 825 -23 13.59 660

gt can be also customized more easily using pre-packaged themes – akin to what we need in ggplot with ggthemes or
with hrbrthemes . Themes are collected in the gtExtras library – that allows also some nice other features that we’ll see
below. Bu let’s start by installing and importing the library

Now, we can apply some nice themes in one go. Some examples:

Table has no assigned ID, using random ID 'yvzhohcxkv' to apply `gt::opt_css()`
Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`

nice_exo2 <- exo2_gt %>%
 # spanners
 tab_spanner(label = "Newark", columns = ends_with("EWR")) %>%
 tab_spanner(label = "JFK", columns = ends_with("JFK")) %>%
 tab_spanner(label = "La Guardia", columns = ends_with("LGA")) %>%
 # new names
 cols_label(month = "Month",
 min_delay_EWR = "min", mean_delay_EWR = "mean", max_delay_EWR = "max",
 min_delay_JFK = "min", mean_delay_JFK = "mean", max_delay_JFK = "max",
 min_delay_LGA = "min", mean_delay_LGA = "mean", max_delay_LGA = "max") %>%
 # 2 digits for mean
 fmt_number(columns = contains("mean"), decimals = 2) %>%
 # titles
 tab_header(title = "Delay at departure for the 3 NYC airports") %>%
 # month in bold, left aligned
 tab_style(style = cell_text(weight = "bold", align = "left"),
 locations = cells_body(columns = "month")) %>%
 # title centered and bold
 tab_options(heading.align = "center", heading.title.font.weight = "bold")
nice_exo2

More customization of gt : gtExtras

install.packages("gtExtras")
library(gtExtras)

wider_exo1_cool %>%
 gt_theme_538()

Miles per gallon, 1999 Miles per gallon, 2008

CITY HIGHWAY CITY HIGHWAY

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

Miles per gallon, 1999 Miles per gallon, 2008

CITY HIGHWAY CITY HIGHWAY

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

Miles per gallon, 1999 Miles per gallon, 2008

City Highway City Highway

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

Table has no assigned ID, using random ID 'mlddkxpqsm' to apply `gt::opt_css()`
Avoid this message by assigning an ID: `gt(id = '')` or `gt_theme_538(quiet = TRUE)`

miles per gallon, 1999 miles per gallon, 2008

city highway city highway

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

wider_exo1_cool %>%
 gt_theme_nytimes()

wider_exo1_cool %>%
 gt_theme_guardian()

wider_exo1_cool %>%
 gt_theme_dot_matrix()

wider_exo1_cool %>%
 gt_theme_dark()

Miles per gallon, 1999 Miles per gallon, 2008

CITY HIGHWAY CITY HIGHWAY

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

Miles per gallon, 1999 Miles per gallon, 2008

City Highway City Highway

2seater 15.50 24.50 15.33 25.00
Compact 19.76 27.92 20.55 28.73
Midsize 18.15 26.50 19.33 28.05
Minivan 16.17 22.50 15.40 22.20
Pickup 13.00 16.81 13.00 16.94
Subcompact 21.58 29.00 18.94 27.12
Suv 13.38 17.55 13.61 18.64

Still: they work only in HTML. As I said above, if you want nice pdf tables you have to use other packages as huxtable or
kableExtra . In this course we focus on html output (slides, notebooks, etc) but pdf output is very relevant for publication.
The good news is that all the different packages work in a very similar way, that is

you work on the data to get to the point where yo have a raw table
you pivot your data to get a table that has the needed shape
you apply a table function (gt , but also kable or hux , depending on the package)
you add layers as you did with ggplot , piping (%>%) each new layer on the table object

gtExtras also allow us to do some nice things like coloring cells according to their value, as in a heatmap. For instance, we
can color the mean delay according to severity, like this:

Warning: Domain not specified, defaulting to observed range within each
specified column.

Delay at departure for the 3 NYC airports

Month

Newark JFK La Guardia

min mean max min mean max min mean max

1 -21 14.91 1126 -17 8.62 1301 -30 5.64 478

2 -21 13.07 786 -22 11.79 747 -33 6.96 853

3 -22 18.10 443 -24 10.72 800 -25 10.23 911

4 -21 17.40 545 -19 12.25 960 -21 11.51 812

5 -20 15.37 878 -23 12.52 853 -24 10.63 533

6 -19 22.47 502 -18 20.50 1137 -21 19.30 803

7 -18 22.04 653 -18 23.77 1005 -22 19.00 898

8 -17 13.49 424 -17 12.91 508 -26 11.24 520

9 -23 7.29 486 -22 6.64 1014 -24 6.21 696

10 -25 8.64 702 -18 4.59 342 -22 5.31 390

11 -22 6.72 798 -18 4.68 636 -32 4.77 413

12 -20 21.03 896 -43 14.79 825 -23 13.59 660

We can also easily highlight a row we particularly care about, for instance in our exo1 dataset about cars, we can highlight
SUVs, like this

wider_exo1_cool %>%
 gt_theme_excel()

Exercise 5: check that the above themes work only in html by compiling to pdf

nice_exo2 %>%
 gt_color_rows(contains("mean"))

Miles per gallon, 1999 Miles per gallon, 2008

City Highway City Highway

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

Finally, some more extra fancy stuff – you can insert miniplots right into tables. For instance, the distribution of a variable as
a little distribution plot.

To do so, we need to pass the whole data for each variable or group as an extra column, and then call some specific
functions. It’s a bit advanced stuff, but it’s not that difficult and the web is your friend!

Let’s try to plot the distribution of departure time for each airport within a table:

origin distro_dep_time

EWR

JFK

LGA

Nice right?

Summaries of datasets with modelsummary

The package modelsummary allows you to do two things really well:

to create summary tables of entire datasets, akin to what summary() or skim() do;

to output nice tables of regression output

In both cases, the package does so with an approach that is in some ways the opposite of the one adopted by gt : where gt
gives you fine control of everything adopting a micro approach and providing functions for each little element,
modelsummary takes a macro approach and gives you big, customizable, single functions that do all the hard job fro you,
with sensible defaults; but that you can tweak if you want to.

These are known within modelsummary as “data summaries”, and as such the function you need to call is datasummary .

just create a nice-looking alternative to the skim command for our old friend the mpg dataset. so go from this:

Data summary

Name mpg

Number of rows 234

Number of columns 11

Column type frequency:

character 6

numeric 5

wider_exo1_cool %>%
 gt_highlight_rows(rows = 7, fill = "chartreuse4", font_color = "white")

flights %>%
 group_by(origin) %>%
 summarise(distro_dep_time = list(dep_time)) %>%
 gt() %>%
 gt_plt_dist(distro_dep_time)

Summaries of datasets

Exercise 6: a simple data summary of the mpg dataset

library(skimr)
skim(mpg)

Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace

manufacturer 0 1 4 10 0 15 0

model 0 1 2 22 0 38 0

trans 0 1 8 10 0 10 0

drv 0 1 1 1 0 3 0

fl 0 1 1 1 0 5 0

class 0 1 3 10 0 7 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist

displ 0 1 3.47 1.29 1.6 2.4 3.3 4.6 7 ▇▆▆▃▁

year 0 1 2003.50 4.51 1999.0 1999.0 2003.5 2008.0 2008 ▇▁▁▁▇

cyl 0 1 5.89 1.61 4.0 4.0 6.0 8.0 8 ▇▁▇▁▇

cty 0 1 16.86 4.26 9.0 14.0 17.0 19.0 35 ▆▇▃▁▁

hwy 0 1 23.44 5.95 12.0 18.0 24.0 27.0 44 ▅▅▇▁▁

To something better looking and nicely formatted, using datasummary_skim like this:

Unique Missing Pct. Mean SD Min Median Max Histogram

displ 35 0 3.5 1.3 1.6 3.3 7.0

year 2 0 2003.5 4.5 1999.0 2003.5 2008.0

cyl 4 0 5.9 1.6 4.0 6.0 8.0

cty 21 0 16.9 4.3 9.0 17.0 35.0

hwy 27 0 23.4 6.0 12.0 24.0 44.0

N %

manufacturer audi 18 7.7

chevrolet 19 8.1

dodge 37 15.8

ford 25 10.7

honda 9 3.8

hyundai 14 6.0

jeep 8 3.4

land rover 4 1.7

lincoln 3 1.3

mercury 4 1.7

nissan 13 5.6

pontiac 5 2.1

subaru 14 6.0

toyota 34 14.5

volkswagen 27 11.5

model 4runner 4wd 6 2.6

a4 7 3.0

a4 quattro 8 3.4

a6 quattro 3 1.3

altima 6 2.6

c1500 suburban 2wd 5 2.1

camry 7 3.0

camry solara 7 3.0

library(modelsummary)
datasummary_skim(mpg)

Unique Missing Pct. Mean SD Min Median Max Histogram

caravan 2wd 11 4.7

civic 9 3.8

corolla 5 2.1

corvette 5 2.1

dakota pickup 4wd 9 3.8

durango 4wd 7 3.0

expedition 2wd 3 1.3

explorer 4wd 6 2.6

f150 pickup 4wd 7 3.0

forester awd 6 2.6

grand cherokee 4wd 8 3.4

grand prix 5 2.1

gti 5 2.1

impreza awd 8 3.4

jetta 9 3.8

k1500 tahoe 4wd 4 1.7

land cruiser wagon 4wd 2 0.9

malibu 5 2.1

maxima 3 1.3

mountaineer 4wd 4 1.7

mustang 9 3.8

navigator 2wd 3 1.3

new beetle 6 2.6

passat 7 3.0

pathfinder 4wd 4 1.7

ram 1500 pickup 4wd 10 4.3

range rover 4 1.7

sonata 7 3.0

tiburon 7 3.0

toyota tacoma 4wd 7 3.0

trans auto(av) 5 2.1

auto(l3) 2 0.9

auto(l4) 83 35.5

auto(l5) 39 16.7

auto(l6) 6 2.6

auto(s4) 3 1.3

auto(s5) 3 1.3

auto(s6) 16 6.8

manual(m5) 58 24.8

manual(m6) 19 8.1

drv 4 103 44.0

f 106 45.3

r 25 10.7

fl c 1 0.4

d 5 2.1

e 8 3.4

Unique Missing Pct. Mean SD Min Median Max Histogram

p 52 22.2

r 168 71.8

class 2seater 5 2.1

compact 47 20.1

midsize 41 17.5

minivan 11 4.7

pickup 33 14.1

subcompact 35 15.0

suv 62 26.5

datasummary also allows you to create correlation matrices, using datasummary_correlation like this

displ year cyl cty hwy

displ 1

year .15 1 . . .

cyl .93 .12 1 . .

cty -.80 -.04 -.81 1 .

hwy -.77 .00 -.76 .96 1

and, handily, cross-tabulations, for instance to count how many observations you have for each carmaker and class. That is,
you can have an ugly count like this, as we know:

A tibble: 32 × 3
Groups: manufacturer, class [32]
 manufacturer class n
 <chr> <chr> <int>
 1 audi compact 15
 2 audi midsize 3
 3 chevrolet 2seater 5
 4 chevrolet midsize 5
 5 chevrolet suv 9
 6 dodge minivan 11
 7 dodge pickup 19
 8 dodge suv 7
 9 ford pickup 7
10 ford subcompact 9
ℹ 22 more rows

Or a nice looking table of counts including percentages using datasummary_crosstab like this:

manufacturer 2seater compact midsize minivan pickup subcompact suv All

audi N 0 15 3 0 0 0 0 18

% row 0.0 83.3 16.7 0.0 0.0 0.0 0.0 100.0

chevrolet N 5 0 5 0 0 0 9 19

% row 26.3 0.0 26.3 0.0 0.0 0.0 47.4 100.0

dodge N 0 0 0 11 19 0 7 37

% row 0.0 0.0 0.0 29.7 51.4 0.0 18.9 100.0

ford N 0 0 0 0 7 9 9 25

% row 0.0 0.0 0.0 0.0 28.0 36.0 36.0 100.0

honda N 0 0 0 0 0 9 0 9

% row 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0

hyundai N 0 0 7 0 0 7 0 14

% row 0.0 0.0 50.0 0.0 0.0 50.0 0.0 100.0

datasummary_correlation(mpg)

mpg %>%
 group_by(manufacturer, class) %>%
 count()

datasummary_crosstab(manufacturer~class, data = mpg)

manufacturer 2seater compact midsize minivan pickup subcompact suv All

jeep N 0 0 0 0 0 0 8 8

% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0

land rover N 0 0 0 0 0 0 4 4

% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0

lincoln N 0 0 0 0 0 0 3 3

% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0

mercury N 0 0 0 0 0 0 4 4

% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0

nissan N 0 2 7 0 0 0 4 13

% row 0.0 15.4 53.8 0.0 0.0 0.0 30.8 100.0

pontiac N 0 0 5 0 0 0 0 5

% row 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0

subaru N 0 4 0 0 0 4 6 14

% row 0.0 28.6 0.0 0.0 0.0 28.6 42.9 100.0

toyota N 0 12 7 0 7 0 8 34

% row 0.0 35.3 20.6 0.0 20.6 0.0 23.5 100.0

volkswagen N 0 14 7 0 0 6 0 27

% row 0.0 51.9 25.9 0.0 0.0 22.2 0.0 100.0

All N 5 47 41 11 33 35 62 234

% row 2.1 20.1 17.5 4.7 14.1 15.0 26.5 100.0

You will see that the info is the same, just better formatted (and not accessible: that is the drawback, if you plan on using
your computed values further along the way, the standard way is ugly but gives you usable data; datasummary is nice
looking but it is helpful only for presentation purposes, as the data is not easily accessible – if at all. It’s for displaying.

Regression tables with modelsummary

Another nice tool under our belt is to be able to report regression output nicely. Standard R leaves a lot to be desired. Let’s
look this up!

Regress Ozone on Temp , Solar.R and Wind using airquality , our old friend from last course. Then show its
summary() . It’s ugly as hell

Call:
lm(formula = Ozone ~ Temp + Solar.R + Wind, data = airquality)

Residuals:
 Min 1Q Median 3Q Max
-40.485 -14.219 -3.551 10.097 95.619

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -64.34208 23.05472 -2.791 0.00623 **
Temp 1.65209 0.25353 6.516 2.42e-09 ***
Solar.R 0.05982 0.02319 2.580 0.01124 *
Wind -3.33359 0.65441 -5.094 1.52e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21.18 on 107 degrees of freedom
 (42 observations deleted due to missingness)
Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16

we know we can tidy() it to generate a nice data.frame that we can use in further analyeses. We did this last time;
to revise, just do it (remember to import the broom library)

Exercise 7: regression output

reg <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)
summary(reg)

A tibble: 4 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -64.3 23.1 -2.79 0.00623
2 Temp 1.65 0.254 6.52 0.00000000242
3 Solar.R 0.0598 0.0232 2.58 0.0112
4 Wind -3.33 0.654 -5.09 0.00000152

This is nice to be used further, but it’s not nice to display. What if our work is done and we need to show the regression? Let’s
try to do this with modelsummary

(1)

(Intercept) -64.342

(23.055)

Temp 1.652

(0.254)

Solar.R 0.060

(0.023)

Wind -3.334

(0.654)

Num.Obs. 111

R2 0.606

R2 Adj. 0.595

AIC 998.7

BIC 1012.3

Log.Lik. -494.359

F 54.834

RMSE 20.80

Nice, right? But not perfect. Can it be customized?

Yes it can. modelsummary offers two ways of customizing a regression output table:

1. using dedicated parameters of the modelsummary() function, that pertain to regression-relevant stuff (coefficient
names, stars, statistics, and the like);

2. by saving the modelsummary object to a gt version of itself, and then just applying all we know from gt (handy!)

Among the functions that we can use to custmize appearance, we single out

fmt that allows to give the formatting of numbers, and in particular the number of digits
estimate that allows to tell modelsummary which estimates we want to show in which way (eg std. errors, conf int,
stars…)
statistic that displays one or more statistics under the estimate
coef_omit that allows you to omit some coefficients (eg intercept)
coef_rename that allows you to rename some coefficients

let’s take the regression we made and

display in the estimate row the estimate and its conf interval
display in the statistic row the p-value and the stars
omit the intercept
format numbers with 2 digits
rename the coefficients to be human-readable (eg Temperature instead of Temp)
and rename the whole model by giving it the predicted variable name (Ozone)

library(broom)
tidy(reg)

modelsummary(reg)

Customizing modelsummary objects

Exercise 8: customize the reg object to look better

modelsummary(list("Ozone" = reg),
 estimate = "{estimate} [{conf.low};{conf.high}]",
 statistic = "{p.value}{stars}",
 coef_omit = "(Intercept)",
 coef_rename = c("Temp" = "Temperature",
 "Solar.R" = "Solar Radiation"),

Ozone

Temperature 1.65 [1.15;2.15]

<0.01***

Solar Radiation 0.06 [0.01;0.11]

0.01*

Wind -3.33 [-4.63;-2.04]

<0.01***

Num.Obs. 111

R2 0.606

R2 Adj. 0.595

AIC 998.7

BIC 1012.3

Log.Lik. -494.359

F 54.834

RMSE 20.80

Also, modelsummary can accommodate several models side-by-side. Let’s run a couple more regressions and add
them

(1) (2) (3)

(Intercept) -64.342 -145.703 -146.995

(23.055) (18.447) (18.287)

Temp 1.652 2.278 2.429

(0.254) (0.246) (0.233)

Solar.R 0.060 0.057

(0.023) (0.026)

Wind -3.334

(0.654)

Num.Obs. 111 111 116

R2 0.606 0.510 0.488

R2 Adj. 0.595 0.501 0.483

AIC 998.7 1020.8 1067.7

BIC 1012.3 1031.7 1076.0

Log.Lik. -494.359 -506.410 -530.853

F 54.834 56.275 108.529

RMSE 20.80 23.18 23.51

Finally, let’s transform the modelsummary of the three models into a gt object – this you do using output = 'gt' –
and then add a title, a spanner, and some other fancy stuff, then use a theme of your choice:

 fmt = 2
)

regression of Ozone on Temp and Solar.R alone
reg2 <- lm(Ozone ~ Temp + Solar.R , data = airquality)

regression of Ozone an Temp alone
reg3 <- lm(Ozone ~ Temp , data = airquality)

modelsummary of the three models
modelsummary(list(reg, reg2, reg3))

modelsummary(list(reg, reg2, reg3),
 output = "gt") %>%
 tab_header(title = "Three regressions using Airquality") %>%
 tab_source_note("from the airquality built-in dataset") %>%

Three regressions using Airquality
Ozone

(1) (2) (3)

(Intercept) -64.342 -145.703 -146.995

(23.055) (18.447) (18.287)

Temp 1.652 2.278 2.429

(0.254) (0.246) (0.233)

Solar.R 0.060 0.057

(0.023) (0.026)

Wind -3.334

(0.654)

Num.Obs. 111 111 116

R2 0.606 0.510 0.488

R2 Adj. 0.595 0.501 0.483

AIC 998.7 1020.8 1067.7

BIC 1012.3 1031.7 1076.0

Log.Lik. -494.359 -506.410 -530.853

F 54.834 56.275 108.529

RMSE 20.80 23.18 23.51

from the airquality built-in dataset

To know more

That’s it for today. To know more about tables, internet is your friend.

gt page: https://gt.rstudio.com/index.html

modelsummary page: https://modelsummary.com

gtExtras page: https://jthomasmock.github.io/gtExtras/

More table packages that you might like and/or want to check out (better pdf tables, fancier html widgets…):

huxtable : https://hughjonesd.github.io/huxtable/

kableExtra :

html: https://inbo.r-universe.dev/kableExtra/doc/awesome_table_in_html.html

pdf: https://haozhu233.github.io/kableExtra/awesome_table_in_pdf.pdf

tinytable : https://vincentarelbundock.github.io/tinytable/

 tab_spanner(columns = contains("("), label = "Ozone") %>%
 gt_theme_nytimes()

https://gt.rstudio.com/index.html
https://modelsummary.com/
https://jthomasmock.github.io/gtExtras/
https://hughjonesd.github.io/huxtable/
https://inbo.r-universe.dev/kableExtra/doc/awesome_table_in_html.html
https://haozhu233.github.io/kableExtra/awesome_table_in_pdf.pdf
https://vincentarelbundock.github.io/tinytable/

