Introduction to R — L7 — Tables

Nice tables in R

This lecture will allow us to explore the world of nice tables in R.

We will first produce a table, then output it in a “raw”, pure text format, and then make it fancier in an html-compliant nice
format. Note that most of the formatting we'll do here will not be available in pdf or docx formats. To format nice tables in
these other formats, you have to use other packages such as kableExtra or huxtable that we will not directly discuss
here.

We will deal with three types of tables:

o tables that are the results of computations you run. We will use gt
e summary tables of statistical models. We will use modelsummary
e summary tables detailing stats of whole datasets. We will use modelsummary

So first let’s install the packages and then call the libraries

gt, for '"great table", from the tidyverse developers
#install.packages("gt")

modelsummary, the best tool to table regressions and models
#install.packages("modelsummary")

library(gt)
library(tidyverse)

Generic tables - i.e. results of computations

We start by creating a simple table of summary statistics as we have done earlier in the course, using our usual tidyverse
tools — filter, mutate, group_by, summarize..

Exercice 1: mpg

Using the mpg built-in dataset, make a table of the mean miles per gallon when driving within a city (cty) and on a
highway (hwy) for each class, in 1999 and 2008. First use our usual tidyverse tools to create a simple text table.

table_exol <- mpg %>%
group_by(class, year) %>%
summarise(mean_cty = mean(cty, na.rm T),
mean_hwy = mean(hwy, na.rm = T))

“summarise()" has grouped output by 'class'. You can override using the
“.groups’ argument.

table_exol

A tibble: 14 x 4
Groups: class [7]

class year mean_cty mean_hwy

<chr> <int> <db1> <db1>
1 2seater 1999 15.5 24.5
2 2seater 2008 15.3 25
3 compact 1999 19.8 27.9
4 compact 2008 20.5 28.7
5 midsize 1999 18.2 26.5
6 midsize 2008 19.3 28.0
7 minivan 1999 16.2 22.5
8 minivan 2008 15.4 22.2
9 pickup 1999 13 16.8
10 pickup 2008 13 16.9
11 subcompact 1999 21.6 29
12 subcompact 2008 18.9 27.1
13 suv 1999 13.4 17.6
14 suv 2008 13.6 18.6

The output is text-only if you run this in a console; an html widget if you run it in the chunk; and again an ugly text-based
copy of what you'd see in the console if you Render your .qmd file.

Please check all this.
Also, look at the object in the Environment pane. The object is a data.frame as we know it so far — just raw data.

Now try to make it less ugly by using gt - first with a simple call to gt ().

table_exol gt <- table_exol %>%

at()
table_exol_gt

year mean_cty mean_hwy
2seater

1999 15.50000 24.50000
2008 15.33333 25.00000
compact

1999 19.76000 27.92000
2008 20.54545 28.72727
midsize

1999 18.15000 26.50000
2008 19.33333 28.04762
minivan

1999 16.16667 22.50000
2008 15.40000 22.20000
pickup

1999 13.00000 16.81250
2008 13.00000 16.94118
subcompact

1999 21.57895 29.00000
2008 18.93750 27.12500
suv

1999 13.37931 17.55172

2008 13.60606 18.63636

This is already better, both when looked at in the chunk and when rendered (try).
Note that gt automatically recognizes groups inyour data.frame.
Look at the object in the Environment pane: it is a complex object (akin to the ggplot s we created along the course)

But what is gt ? Let’s dive deeper!

gt — great t ables

gt is a package to generate nice looking tables; it strives to be as general as possible and to allow customization of all
elements of a table.

The Parts of a gt Table

TABLE TITLE |
HEADER SUBTITLE |
SPANNER COLUMN LABEL
STUB W ruBHEAD LABEL COLUMN COLUMN
HEAD COLUMN COLUMN LABEL LABELS
LABEL LABEL
ROW GROUP LABEL
ROW LABEL Cell Cell cell TABLE
STUB ROW LABEL cell cell cell BODY
SUMMARY LABEL Summary Cell | Summary Cell | Summary Cell
FOOTNOTES TABLE
SOURCE NOTES FOOTER

gt general structure and terminology

A gt table is created by simply calling gt () on a data.frame. So you can make all the changes / computations you want
and then display those as a gt table by simply piping the object you created to gt ().

Exercise 2: NYCflights and gt

Get our dear old nycflights dataset, and create a table of min, mean and max (on the columns) departure delays for
each month (on the rows) for the 3 New York airports (on the columns). In other words, The table must look like this:

JFK LGA EWR
min | mean | max | min | mean | max | min | mean | max

Jan
Feb
Mar

Then feed itto gt () to create a nice-looking HTML table. Check the result in pdf too. It doesn't matter right now if you
don't get it perfectly right.

Important: remember to use pivot_wider to create the columns you need out of your originally 1ong format dataset.

library(nycflights13)

1. generate the needed stats
exo02 <- flights %>%
group_by(month, origin) %>%
summarise(min_delay = min(dep_delay, na.rm = T),
mean_delay = mean(dep_delay, na.rm = T),
max_delay = max(dep_delay, na.rm = T))

“summarise()" has grouped output by 'month'. You can override using the
‘.groups’ argument.

exo2

A tibble: 36 x 5
Groups: month [12]
month origin min_delay mean_delay max_delay

<int> <chr> <db1> <db1> <dbl>
1 1 EWR -21 14.9 1126
2 1 JFK -17 8.62 1301
3 1 LGA -30 5.64 478
4 2 EWR -21 13.1 786
5 2 JFK -22 11.8 747
6 2 LGA -33 6.96 853
7 3 EWR -22 18.1 443
8 3 JFK -24 10.7 800
9 3 LGA -25 10.2 911
10 4 EWR -21 17.4 545

i 26 more rows

2. realize it's in long format! use pivot_wider
exo02_wide <- exo02 %>%

pivot_wider(names_from = origin, values_from = ends_with("delay"))
exo2_wide

A tibble: 12 x 10
Groups: month [12]
month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK

<int> <db1> <db1> <db1> <db1> <db1>
1 1 -21 -17 -30 14.9 8.62
2 2 -21 -22 -33 13.1 11.8
3 3 -22 -24 -25 18.1 10.7
4 4 -21 -19 -21 17.4 12.2
5 5 -20 -23 -24 15.4 12.5
6 6 -19 -18 -21 22.5 20.5
7 7 -18 -18 -22 22.0 23.8
8 8 -17 -17 -26 13.5 12.9
9 9 -23 -22 -24 7.29 6.64
10 10 -25 -18 -22 8.64 4.59
11 11 -22 -18 -32 6.72 4.68
12 12 -20 -43 -23 21.0 14.8

i 4 more variables: mean_delay_LGA <dbl>, max_delay_EWR <dbl>,
max_delay_JFK <dbl>, max_delay_LGA <dbl>

3. realize we have a problem as nested column titles are NOT a thing in R
but we'll deal with that later
let's just feed it to "gt’ right now
ex02_wide %>%
gt()

min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA max_d
1

-21 -17 -30 14.905748 8.615826 5.641560

min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA max_d

2

-21 -22 -33 13.067263 11.791355 6.961582
3

-22 -24 -25 18.102457 10.721825 10.232041
4

-21 -19 -21 17.400058 12.249059 11.508915
5)

-20 -23 -24 15.366141 12.519432 10.630508
6

-19 -18 -21 22.470810 20.499729 19.296698
7

-18 -18 -22 22.035112 23.769262 18.995163
8

-17 -17 -26 13.493714 12.914358 11.244042
9

-23 -22 -24 7.290954 6.635776 6.207439
10

-25 -18 -22 8.636436 4.592556 5.309137
11

-22 -18 -32 6.723769 4.678464 4.767144
12

-20 -43 -23 21.026575 14.788352 13.588830
4. uh oh we've got a problem -- gt recognizes groups! that's bad (here)... so

exo02_gt <- exo2_wide %>%
ungroup() %>%
gt()

exo2_gt

month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA

1 -21 -17 -30 14.905748 8.615826 5.641560
2 -21 -22 -33 13.067263 11.791355 6.961582
3 -22 -24 225 18.102457 10.721825 10.232041
4 -21 -19 -21 17.400058 12.249059 11.508915
5 -20 £23 -24 15.366141 12.519432 10.630508
6 -19 -18 -21 22.470810 20.499729 19.296698
7 -18 -18 -22 22.035112 23.769262 18.995163
8 -17 -17 -26 13.493714 12.914358 11.244042
9 23 -22 -24 7.290954 6.635776 6.207439
10 -25 -18 -22 8.636436 4.592556 5.309137
11 -22 -18 -32 6.723769 4.678464 4767144
12 -20 -43 -23 21.026575 14.788352 13.588830

This is ok, better than text, but it’s still ugly and not what we want.

Luckily gt comes with a series of powerful functions to customize any aspect of a table!

Customizing a gt object

Once you have a gt object, you can use some simple families of functions to customize the table.

The Parts of a gt Table

TABLE TITLE]
HEADER SUBTITLE |
SPANNER COLUMN LABEL
STUB ' grysHEAD LABEL COLUMN COLUMN
HEAD COLUMN COLUMN LABEL LABELS
LABEL LABEL
ROW GROUP LABEL
ROW LABEL Cell Cell cell TABLE
STuB ROW LABEL cell cell cell BODY
SUMMARY LABEL Summary Cell | Summary Cell | Summary Cell
FOOTNOTES TABLE
SOURCE NOTES FOOTER

e tab_header tab_caption tab_footnote etc.. deal with the different parts of the table

¢ to change the format of the data (eg round numbers, good formatting of dates, etc...) you can use the family of
fmt_... functions. E.g. fmt_date to format dates, fmt_number to choose eg digit to round to, etc...

e tab_spanner creates the “spanners”, i.e. the second- or third-level column labels.

e tab_row_group controls variables used for grouping (gt automatically uses the groups of your df if you don't tell it
not to, as we have seen, but this can be changed).

o functions starting with cols_... allow you to change column behavior. For instance cols_label allows you to relabel
columns (important: in standard R, data.frames cannot have two columns with the same name; but with cols_label
this is no more a problem!), cols_merge merges data of two columns into one, Then you can change the alignment of
the columns, their width, etc...

e You can add a summary across all rows with summary_rows
e tab_style allows you to change the style & appearance of any cell, row or column

e tab_options is similarto theme for ggplot, as it allows you to modify the look of single elements of a table.

Exercices 3: let's format nicely the table from Exo 1
Let's call back the gt table we creatd in exercise 1. It has several problems: it's too long, the number of digits shown

is not optimal; it has groups and we might not want that; the names of the columns are ugly, etc...

table_exol_gt

year mean_cty mean_hwy
2seater

1999 15.50000 24.50000
2008 15.33333 25.00000
compact

1999 19.76000 27.92000
2008 20.54545 28.72727
midsize

1999 18.15000 26.50000
2008 19.33333 28.04762
minivan

1999 16.16667 22.50000
2008 15.40000 22.20000
pickup

1999 13.00000 16.81250
2008 13.00000 16.94118
subcompact

1999 21.57895 29.00000
2008 18.93750 27.12500

suv

year mean_cty mean_hwy
1999 13.37931 17.55172

2008 13.60606 18.63636

Let's try to make it look better using the extra tools of gt. Let's:

¢ add a title and subtitle

e add a note telling the reader the source of the data

o format numbers with just 2 decimal places, but not for the “year” variable (that would be dumb)
o add a spanner on top of the cty and hwy columns

e rename those columns to some more decent names

table_exol_gt %>%
header: title and subtitle
tab_header(title = "Mean miles per gallon in city and highway",
subtitle = "by class of car and year of immatriculation") %>%
source of the table
tab_source_note("Source: {mpg} built-in dataset, R") %>%
formatting: 2 digits (but for year)

fmt_number (columns = -year, decimals = 2) %>%
spanner
tab_spanner(label = "Mean miles per gallon", columns = c(mean_cty, mean_hwy)) %>%

nice names
cols_label(mean_cty = "Within cities", mean_hwy = "On highways")

Mean miles per gallon in city and highway

by class of car and year of immatriculation
Mean miles per gallon

year Within cities On highways

2seater

1999 15.50 24.50

2008 1538 25.00
compact

1999 19.76 27.92

2008 20.55 28.73
midsize

1999 18.15 26.50

2008 19.33 28.05
minivan

1999 16.17 22.50

2008 15.40 22.20
pickup

1999 13.00 16.81

2008 13.00 16.94
subcompact

1999 21.58 29.00

2008 18.94 27.12
suv

1999 13.38 17.55

2008 13.61 18.64

Source: {mpg} built-in dataset, R

This is already better, but it is also the chance to revise the good old pivot_wider and pivot_longer functions. Can
we make the table wider, with year on the columns rather than rows? Let’s restart from the raw object and make it
wider, first

wider_exol <- table_exol %>%
pivot_wider(names_from = year, values_from = c(mean_cty, mean_hwy)) %>%
ungroup()

wider_exol

A tibble: 7 x 5

class mean_cty_1999 mean_cty_2008 mean_hwy_1999 mean_hwy_2008

<chr> <db1> <db1> <db1> <db1>
1 2seater 15.5 15.3 24.5 25
2 compact 19.8 20.5 27.9 28.7
3 midsize 18.2 19.3 26.5 28.0
4 minivan 16.2 15.4 22.5 22.2
5 pickup 13 13 16.8 16.9
6 subcompact 21.6 18.9 29 27.1
7 suv 13.4 13.6 17.6 18.6

Now let's make it into a gt object and then make it nicer using all the tricks above. In particular we want to:

¢ add a spanner for 1999 and one for 2008

e rename nicely cty and hwy

e 2 decimal places

e using tab_style, format the first column as bold

wider_exol_cool <- wider_exol %>%
gt() %>%
spanners
tab_spanner(label = "Miles per gallon, 1999", columns = contains("1999")) %>%
tab_spanner(label = "Miles per gallon, 2008", columns = contains("2008")) %>%
labels -- note that twice the same label is alright!
cols_label(class = " ", mean_cty_1999 = "City",
mean_hwy_1999 = "Highway", mean_cty_ 2008 = "City",
mean_hwy_2008 = "Highway") %>%
fmt_number (decimals = 2) %>%
tab_style(style = list(cell_text(weight = "bold", transform = "capitalize")),
locations = cells_body(columns = class))
wider_exol_cool

Miles per gallon, 1999 Miles per gallon, 2008

City Highway City Highway
2seater 15.50 24.50 1888 25.00
Compact 19.76 27.92 20.55 28.73
Midsize 18.15 26.50 19.33 28.05
Minivan 16.17 22.50 15.40 22.20
Pickup 13.00 16.81 13.00 16.94
Subcompact 21.58 29.00 18.94 27.12
Suv 13.38 17.55 13.61 18.64

Exercice 4: let's format nicely the table from Exo 2

Now let’s go back to exercise 2. Remember what we wanted? This

JFK LGA EWR
min | mean | max | min | mean | max | min | mean | max
Jan
Feb
Mar

Also, remember what we've got? this

exo2_gt <- exo2_wide %>% ungroup %>% gt()
exo2_gt

month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA

1 -21 -17 -30 14.905748 8.615826
2 -21 -22 -33 13.067263 11.791355
3 -22 -24 £25 18.102457 10.721825
4 -21 -19 21 17.400058 12.249059
5 -20 -23 -24 15.366141 12.519432

5.641560
6.961582
10.232041
11.508915

10.630508

month min_delay_EWR min_delay_JFK min_delay_LGA mean_delay_EWR mean_delay_JFK mean_delay_LGA

6

7

10
11

12

-19

-18

-17

-18

-18

-17

22.470810

22.035112

13.493714

7.290954

8.636436

6.723769

21.026575

20.499729

23.769262

12.914358

6.635776

4.592556

4.678464

14.788352

19.296698

18.995163

11.244042

6.207439

5.309137

4767144

13.588830

Now you know how to turn that ugly table into the beautifully organized table we want! So as Nike once said, just do it.

nice_exo2 <- exo2_gt %>%

spanners

tab_spanner(label =
tab_spanner(label =
tab_spanner(label =

new names

"Newark", columns = ends_with("EWR")) %>%
"JFK", columns = ends_with("JFK")) %>%
"La Guardia", columns = ends_with("LGA")) %>%

cols_label(month = "Month",

min_delay_EWR = "min", mean_delay_EWR = "mean", max_delay_EWR = "max"
min_delay_JFK = "min", mean_delay_ JFK = "mean", max_delay_JFK = "max"
min_delay_LGA = "min", mean_delay_LGA = "mean", max_delay_LGA = "max") %>%
2 digits for mean
fmt_number (columns = contains("mean"), decimals = 2) %>%
titles
tab_header(title = "Delay at departure for the 3 NYC airports") %>%
month in bold, left aligned
tab_style(style = cell_text(weight = "bold", align = "left"),
locations = cells_body(columns = "month")) %>%
title centered and bold
tab_options(heading.align = "center", heading.title.font.weight = "bold")
nice_exo2
Delay at departure for the 3 NYC airports
Newark JFK La Guardia
Month min mean max min mean max min mean max
1 21 1491 1126 -17 8.62 1301 -30 5.64 478
2 -21 13.07 786 -22 11.79 747 -33 6.96 853
3 -22 18.10 443 -24 10.72 800 -25 10.23 911
4 -21 17.40 545 -19 12.25 960 -21 11.51 812
5 -20 15.37 878 -23 1252 853 -24 10.63 533
6 -19 2247 502 -18 20.50 1137 -21 19.30 803
7 -18 22.04 653 -18 23.77 1005 -22 19.00 898
8 -17 13.49 424 17 1291 508 -26 11.24 520
9 -23 7.29 486 22 6.64 1014 24 6.21 696
10 -25 8.64 702 -18 4.59 342 -22 531 390
11 22 6.72 798 -18 4.68 636 -32 477 413
12 -20 21.03 896 -43 14.79 825 -23 13.59 660

More customization of gt: gtExtras

gt can be also customized more easily using pre-packaged themes — akin to what we need in ggplot with ggthemes or

with hrbrthemes. Themes are collected in the gtExtras library — that allows also some nice other features that we'll see

below. Bu let’s start by installing and importing the library

install.packages("gtExtras")
library(gtExtras)

Now, we can apply some nice themes in one go. Some examples:

wider_exol_cool %>%
gt_theme_538()

Table has no assigned ID, using random ID 'yvzhohcxkv' to apply "gt::opt_css()’

Avoid this message by assigning an ID:

“gt(id = '')" or ‘gt_theme_538(quiet = TRUE)"

Miles per gallon, 1999

Miles per gallon, 2008

CITY HIGHWAY CITY HIGHWAY

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 19.33 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

wider_exol_cool %>%
gt_theme_nytimes()
Miles per gallon, 1999 Miles per gallon, 2008

Ty HIGHWAY Ty HIGHWAY

2seater 15.50 24.50 15.33 25.00

Compact 19.76 27.92 20.55 28.73

Midsize 18.15 26.50 1958 28.05

Minivan 16.17 22.50 15.40 22.20

Pickup 13.00 16.81 13.00 16.94

Subcompact 21.58 29.00 18.94 27.12

Suv 13.38 17.55 13.61 18.64

wider_exol_cool %>%
gt_theme_guardian()

2seater

Compact

Midsize

Minivan

Pickup

Subcompact

Suv

wider_exol_cool %>%
gt_theme_dot_matrix()

Miles per gallon, 1999

City Highway
15.50 24.50
19.76 27.92
18.15 26.50
16.17 22.50
13.00 16.81
21.58 29.00
13.38 17.55

Miles per gallon, 2008

City Highway
15.33 25.00
20.55 28.73
19.33 28.05
15.40 22.20
13.00 16.94
18.94 27.12
13.61 18.64

Table has no assigned ID, using random ID 'mlddkxpgsm' to apply "gt::opt_css()’

Avoid this message by assigning an ID:

‘gt(id = '"')" or “gt_theme_538(quiet = TRUE)"

miles per gallon, 1999 miles per gallon, 2008

city highway city highway

2seater 15.50 24.50 15.33 25.00
Compact 19.76 27.92 20.55 28.73
Midsize 18.15 26.50 19.33 28.05
Minivan 16.17 22.50 15.40 22.20
Pickup 13.00 16.81 13.00 16.94
Subcompact 21.58 29.00 18.94 27.12
Suv 13.38 17 .53 13.61 18.64

wider_exol_cool %>%

gt_theme_dark()

wider_exol_cool %>%
gt_theme_excel()

2seater 15.50 24.50 15.33 25.00
Compact 19.76 27.92 20.55 28.73
Midsize 18.15 26.50 19.33 28.05
Minivan 16.17 22.50 15.40 22.20
Pickup 13.00 16.81 13.00 16.94
Subcompact 21.58 29.00 18.94 27.12
Suv 13.38 17.55 13.61 18.64

Still: they work only in HTML. As | said above, if you want nice pdf tables you have to use other packages as huxtable or
kableExtra. In this course we focus on html output (slides, notebooks, etc) but pdf output is very relevant for publication.
The good news is that all the different packages work in a very similar way, that is

« you work on the data to get to the point where yo have a raw table

e you pivot your data to get a table that has the needed shape

» you apply a table function (gt , but also kable or hux, depending on the package)

o you add layers as you did with ggplot, piping (%>%) each new layer on the table object

Exercise 5: check that the above themes work only in html by compiling to pdf

gtExtras also allow us to do some nice things like coloring cells according to their value, as in a heatmap. For instance, we
can color the mean delay according to severity, like this:

nice_exo2 %>%
gt_color_rows(contains("mean"))

warning: Domain not specified, defaulting to observed range within each
specified column.

Delay at departure for the 3 NYC airports
Newark JFK La Guardia

Month min mean max min mean max min mean max

1 -21 1126 -17 8.62 1301 30 5.64 478
2 -21 786 -22 747 33 6.96 853
3 -22 443 -24 800 -25 911
4 -21 545 -19 960 -21 812
5 -20 878 -23 853 -24 533
6 -19 502 -18 1137 -21 803
7 -18 653 -18 1005 -22 898
8 -17 424 -17 508 -26 520
9 23 729 486 22 6.64 1014 24 6.21 696
10 25 8.64 702 -18 459 342 -22 531 390
11 22 6.72 798 -18 468 636 32 477 413
12 -20 896 -43 825 -23 660

We can also easily highlight a row we particularly care about, for instance in our exo1 dataset about cars, we can highlight
SUVs, like this

wider_exol_cool %>%
gt_highlight_rows(rows = 7, fill = "chartreuse4", font_color = "white")

Miles per gallon, 1999 Miles per gallon, 2008

City Highway City Highway
2seater 15.50 24.50 15.33 25.00
Compact 19.76 27.92 20.55 28.73
Midsize 18.15 26.50 19.33 28.05
Minivan 16.17 22.50 15.40 22.20
Pickup 13.00 16.81 13.00 16.94
Subcompact 21.58 29.00 18.94 27.12

Finally, some more extra fancy stuff — you can insert miniplots right into tables. For instance, the distribution of a variable as
a little distribution plot.

To do so, we need to pass the whole data for each variable or group as an extra column, and then call some specific
functions. It's a bit advanced stuff, but it's not that difficult and the web is your friend!

Let's try to plot the distribution of departure time for each airport within a table:

flights %>%
group_by(origin) %>%
summarise(distro_dep_time = list(dep_time)) %>%
gt() %%
gt_plt_dist(distro_dep_time)

origin distro_dep_time
EWR e e
JFK A ey
LGA e

Nice right?

Summaries of datasets with mode lsummary

The package modelsummary allows you to do two things really well:
¢ to create summary tables of entire datasets, akin to what summary() or skim() do;
e to output nice tables of regression output

In both cases, the package does so with an approach that is in some ways the opposite of the one adopted by gt : where gt
gives you fine control of everything adopting a micro approach and providing functions for each little element,
modelsummary takes a macro approach and gives you big, customizable, single functions that do all the hard job fro you,
with sensible defaults; but that you can tweak if you want to.

Summaries of datasets

These are known within modelsummary as “data summaries”, and as such the function you need to call is datasummary .

Exercise 6: a simple data summary of the mpg dataset

just create a nice-looking alternative to the skim command for our old friend the mpg dataset. so go from this:

library(skimr)
skim(mpg)

Data summary
Name mpg
Number of rows 234
Number of columns 11

Column type frequency:
character 6

numeric 5)

Group variables None
Variable type: character
skim_variable n_missing complete_rate min max empty n_unique whitespace
manufacturer 0 1 4 10 0 15 0
model 0 1 2 22 0 38 0
trans 0 1 8 10 0 10 0
drv 0 1 1 1 0 3 0
fl 0 1 1 1 0 5) 0
class 0 1 3 10 0 7 0
Variable type: numeric
skim_variable n_missing complete_rate mean sd po p25 p50 p75 p100 hist
displ 0 1 347 1.29 1.6 24 33 46 7
year 0 1 2003.50 4.51 1999.0 1999.0 2003.5 2008.0 2008 W_H
cyl 0 1 589 1.61 4.0 4.0 6.0 8.0 sILALE
cty 0 1 16.86 4.26 9.0 14.0 17.0 19.0 KEN
hwy 0 1 23.44 595 12.0 18.0 24.0 27.0 Vol
To something better looking and nicely formatted, using datasummary_skim like this:
library(modelsummary)
datasummary_skim(mpg)
Unique Missing Pct. Mean SD Median Max Histogram
displ 35 0 3.5 1.3 3.3 7.0 | ¥Tg
year 2 0 2003.5 4.5 1999.0 2003.5 2008.0 | 1
cyl 4 0 59 1.6 6.0 8.0 LI 1
cty 21 0 16.9 4.3 17.0 35.0 i "
hwy 27 0 23.4 6.0 24.0 44.0 i
N %
manufacturer audi 18 7.7
chevrolet 19 8.1
dodge 37 15.8
ford 25 10.7
honda 9 3.8
hyundai 14 6.0
jeep 8 3.4
land rover 4 1.7
lincoln 3 1.3
mercury 4 1.7
nissan 13 5.6
pontiac 5 2.1
subaru 14 6.0
toyota 34 14.5
volkswagen 27 11.5
model 4runner 4wd 6 2.6
a4 7 3.0
a4 quattro 8 34
a6 quattro 3 1.3
altima 6 2.6
¢1500 suburban 2wd 5 2.1
camry 7 3.0
camry solara 7 3.0

Unique Missing Pct. Mean SD Min Median Max Histogram

caravan 2wd 11 4.7
civic 9 3.8
corolla 5 2.1
corvette 5 2.1
dakota pickup 4wd 9 3.8
durango 4wd 7 3.0
expedition 2wd 3 1.3
explorer 4wd 6 2.6
150 pickup 4wd 7 3.0
forester awd 6 2.6
grand cherokee 4wd 8 3.4
grand prix 5 2.1
gti 5 2.1
impreza awd 8 3.4
jetta 9 3.8
k1500 tahoe 4wd 4 1.7
land cruiser wagon 4wd 2 0.9
malibu 5 2.1
maxima 3 1.3
mountaineer 4wd 4 1.7
mustang 9 3.8
navigator 2wd 3 1.3
new beetle 6 2.6
passat 7 3.0
pathfinder 4wd 4 1.7
ram 1500 pickup 4wd 10 4.3
range rover 4 1.7
sonata 7 3.0
tiburon 7 3.0
toyota tacoma 4wd 7 3.0
trans auto(av) 5 2.1
auto(I3) 2 0.9
auto(l4) 83 35.5
auto(I5) 39 16.7
auto(16) 6 2.6
auto(s4) 3 1.3
auto(s5) 3 1.3
auto(s6) 16 6.8
manual(mb5) 58 24.8
manual(mé) 19 8.1
drv 4 103 44.0
f 106 453
r 25 10.7
fl c 1 0.4
d 5 2.1

Unique Missing Pct. Mean SD Min Median Max Histogram

p 52 222
r 168 71.8
class 2seater 5 2.1
compact 47 20.1
midsize 41 17.5
minivan 11 4.7
pickup 33 14.1
subcompact 35 15.0
suv 62 26.5

datasummary also allows you to create correlation matrices, using datasummary_correlation like this

datasummary_correlation(mpg)

displ year cyl cty hwy
displ 1
year 15 1
cyl 93 .12 1
cty -80 -.04 -81 1
hwy -77 .00 -76 .96 1

and, handily, cross-tabulations, for instance to count how many observations you have for each carmaker and class. That is,
you can have an ugly count like this, as we know:

mpg %>%
group_by(manufacturer, class) %>%

count()

A tibble: 32 x 3

Groups: manufacturer, class [32]
manufacturer class n
<chr> <chr> <int>

1 audi compact 15
2 audi midsize 3
3 chevrolet 2seater 5
4 chevrolet midsize 5
5 chevrolet suv 9
6 dodge minivan 11
7 dodge pickup 19
8 dodge suv 7
9 ford pickup 7
10 ford subcompact 9

i 22 more rows
Or a nice looking table of counts including percentages using datasummary crosstab like this:

datasummary_crosstab(manufacturer~class, data = mpg)

manufacturer 2seater compact midsize minivan pickup subcompact suv All
audi N 0 15 3 0 0 0 0 18
% row 0.0 83.3 16.7 0.0 0.0 0.0 0.0 100.0
chevrolet N 5 0 5 0 0 0 9 19
% row 26.3 0.0 26.3 0.0 0.0 0.0 47.4 1000
dodge N 0 0 0 11 19 0 7 37
% row 0.0 0.0 0.0 29.7 51.4 0.0 189 100.0
ford N 0 0 0 0 7 9 9 25
% row 0.0 0.0 0.0 0.0 28.0 36.0 36.0 100.0
honda N 0 0 0 0 0 9 0 9
% row 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0
hyundai N 0 0 7 0 0 7 0 14

% row 0.0 0.0 50.0 0.0 0.0 50.0 0.0 100.0

manufacturer 2seater compact midsize minivan pickup subcompact suv All

jeep N 0 0 0 0 0 0 8 8
% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
land rover N 0 0 0 0 0 0 4 4
% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
lincoln N 0 0 0 0 0 0 3 3
% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
mercury N 0 0 0 0 0 0 4 4
% row 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0
nissan N 0 2 7 0 0 0 4 13
% row 0.0 15.4 53.8 0.0 0.0 0.0 30.8 100.0
pontiac N 0 0 5 0 0 0 0 5
% row 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0
subaru N 0 4 0 0 0 4 6 14
% row 0.0 28.6 0.0 0.0 0.0 28.6 429 100.0
toyota N 0 12 7 0 7 0 8 34
% row 0.0 353 20.6 0.0 20.6 0.0 235 100.0
volkswagen N 0 14 7 0 0 6 0 27
% row 0.0 51.9 25.9 0.0 0.0 22.2 0.0 100.0
All N 5 47 41 11 33 35 62 234
% row 2.1 20.1 17.5 47 14.1 15.0 26.5 100.0

You will see that the info is the same, just better formatted (and not accessible: that is the drawback, if you plan on using
your computed values further along the way, the standard way is ugly but gives you usable data; datasummary is nice
looking but it is helpful only for presentation purposes, as the data is not easily accessible - if at all. It's for displaying.

Regression tables with modelsummary

Another nice tool under our belt is to be able to report regression output nicely. Standard R leaves a lot to be desired. Let's
look this up!

Exercise 7: regression output

Regress 0zone on Temp, Solar.R and wind using airquality, our old friend from last course. Then show its
summary () . It's ugly as hell

reg <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)
summary(reg)

Call:
Im(formula = Ozone ~ Temp + Solar.R + Wind, data = airquality)

Residuals:
Min 1Q Median 3Q Max
-40.485 -14.219 -3.551 10.097 95.619

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -64.34208 23.05472 -2.791 0.00623 **

Temp 1.65209 0.25353 6.516 2.42e-09 ***

Solar.R 0.05982 0.02319 2.580 0.01124 *

wind -3.33359 0.65441 -5.094 1.52e-06 ***

Signif. codes: © '***' 0.001 '**' 0.01 '*' ©.05 '.' 0.1 ' ' 1

Residual standard error: 21.18 on 107 degrees of freedom
(42 observations deleted due to missingness)

Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948

F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16

we know we can tidy() it to generate a nice data.frame that we can use in further analyeses. We did this last time;
to revise, just do it (remember to import the broom library)

library(broom)
tidy(reg)

A tibble: 4 x 5

term estimate std.error statistic p.value
<chr> <db1> <db1> <db1> <db1>
1 (Intercept) -64.3 23.1 -2.79 0.00623
2 Temp 1.65 0.254 6.52 0.00000000242
3 Solar.R 0.0598 0.0232 2.58 0.0112
4 Wind -3.33 0.654 -5.09 0.00000152

This is nice to be used further, but it's not nice to display. What if our work is done and we need to show the regression? Let's
try to do this with modelsummary

modelsummary(reg)

M

(Intercept) -64.342

(23.055)
Temp 1.652

(0.254)
SolarR 0.060

(0.023)
Wind -3.334

(0.654)

Num.Obs. 111

R2 0.606
R2 Ad]. 0.595
AlC 998.7
BIC 1012.3

Log.lik. -494.359
F 54.834
RMSE 20.80

Nice, right? But not perfect. Can it be customized?

Customizing modelsummary objects

Yes it can. modelsummary offers two ways of customizing a regression output table:

1. using dedicated parameters of the modelsummary () function, that pertain to regression-relevant stuff (coefficient
names, stars, statistics, and the like);
2. by saving the modelsummary objectto a gt version of itself, and then just applying all we know from gt (handy!)

Among the functions that we can use to custmize appearance, we single out

o fmt that allows to give the formatting of numbers, and in particular the number of digits

e estimate that allows to tell modelsummary which estimates we want to show in which way (eg std. errors, conf int,
stars...)

e statistic that displays one or more statistics under the estimate

o coef_omit that allows you to omit some coefficients (eg intercept)

e coef_rename that allows you to rename some coefficients

Exercise 8: customize the reg object to look better
let’s take the regression we made and

« display in the estimate row the estimate and its conf interval

o display in the statistic row the p-value and the stars

¢ omit the intercept

o format numbers with 2 digits

» rename the coefficients to be human-readable (eg Temperature instead of Temp)
 and rename the whole model by giving it the predicted variable name (0zone)

modelsummary(list("Ozone" = reg),
estimate = "{estimate} [{conf.low};{conf.high}]",
statistic = "{p.value}{stars}",
coef_omit = "(Intercept)",
coef_rename = c("Temp" = "Temperature",

"Solar.R" = "Solar Radiation"),

fmt = 2

Ozone
Temperature 1.65[1.15;2.15]
<0401 *kk

Solar Radiation 0.06 [0.01;0.11]

0.01*

Wind -3.33 [4.63;-2.04]

<0.07***
Num.Obs. 111
R2 0.606
R2 Adj. 0.595
AIC 998.7
BIC 1012.3
Log.Lik. -494.359
F 54.834
RMSE 20.80

Also, modelsummary can accommodate several models side-by-side. Let’s run a couple more regressions and add

them

regression of Ozone on Temp and Solar.R alone
reg2 <- lm(Ozone ~ Temp + Solar.R , data = airquality)

regression of Ozone an Temp alone
reg3 <- lm(Ozone ~ Temp , data = airquality)

modelsummary of the three models
modelsummary(list(reg, reg2, reg3))

(1 2 (3
(Intercept) -64.342 -145.703 -146.995

(23.055) (18.447) (18.287)
Temp 1652 2278 2429

(0.254) (0.246) (0.233)
Solar.R 0060 0.057

(0.023) (0.026)

Wind -3.334
(0.654)

Num.Obs. 111 111 116

R2 0.606 0510 0.488

R2 Adj. 0.595 0.501 0.483

AlC 998.7 10208 1067.7

BIC 10123 10317 1076.0

Log.Lik. -494.359 -506.410 -530.853
F 54.834 56.275 108.529
RMSE 20.80 23.18 23.51

Finally, let's transform the modelsummary of the three models into a gt object — this you do using output = 'gt' -
and then add a title, a spanner, and some other fancy stuff, then use a theme of your choice:

modelsummary(list(reg, reg2, reg3),
output = "gt") %>%
tab_header(title = "Three regressions using Airquality") %>%
tab_source_note("from the airquality built-in dataset") %>%

tab_spanner(columns = contains("("), label = "Ozone") %>%
gt_theme_nytimes()

Three regressions using Airquality

Ozone

(1) 2) @)
(Intercept) ~ -64.342 -145.703 -146.995
(23.055) (18.447) (18.287)
Temp 1.652 2278 2.429
(0.254) (0.246) (0.233)
Solar.R 0.060 0.057

(0.023) (0.026)

Wind -3.334

(0.654)
Num.Obs. 111 111 116
R2 0.606 0.510 0.488
R2 Adj. 0.595 0.501 0.483
AIC 998.7 1020.8 1067.7
BIC 1012.3 1031.7 1076.0
Log.Lik. -494.359 -506.410 -530.853
F 54.834 56.275 108.529
RMSE 20.80 23.18 23.51

from the airquality built-in dataset

To know more

That's it for today. To know more about tables, internet is your friend.

e gt page: https://gt.rstudio.com/index.html

e modelsummary page: https:/modelsummary.com

e gtExtras page: https://jthomasmock.github.io/gtExtras/

* More table packages that you might like and/or want to check out (better pdf tables, fancier html widgets...):

o huxtable: https://hughjonesd.github.io/huxtable/

o kableExtra:

= html: https://inbo.r-universe.dev/kableExtra/doc/awesome_table_in_html.html

= pdf: https://haozhu233.github.io/kableExtra/awesome_table_in_pdf.pdf

o tinytable: https:/vincentarelbundock.github.io/tinytable/

https://gt.rstudio.com/index.html
https://modelsummary.com/
https://jthomasmock.github.io/gtExtras/
https://hughjonesd.github.io/huxtable/
https://inbo.r-universe.dev/kableExtra/doc/awesome_table_in_html.html
https://haozhu233.github.io/kableExtra/awesome_table_in_pdf.pdf
https://vincentarelbundock.github.io/tinytable/

