

Introduction to R and the tidyverse

– plotting part 1 –

Paolo Crosetto

Why plot?

Why do we plot

*Why do we want to **plot** data?*

- we are human beings – we are **pattern recognizers**
- we can see things we are not able to grasp from data
- good to **explore** a dataset and look for regularities
- good to **convey** a *clear message*
- to have **fun**

Why plot? Eyeballing

Eyeballing the data first is *always* a good idea

- data could look *similar* at a first glance
- and even have similar descriptive statistics
- but still be *very different* in practice

An example

- data contains vars x and y , over 13 different conditions
- import `data/plotme.tsv`, compute μ, σ by `dataset`

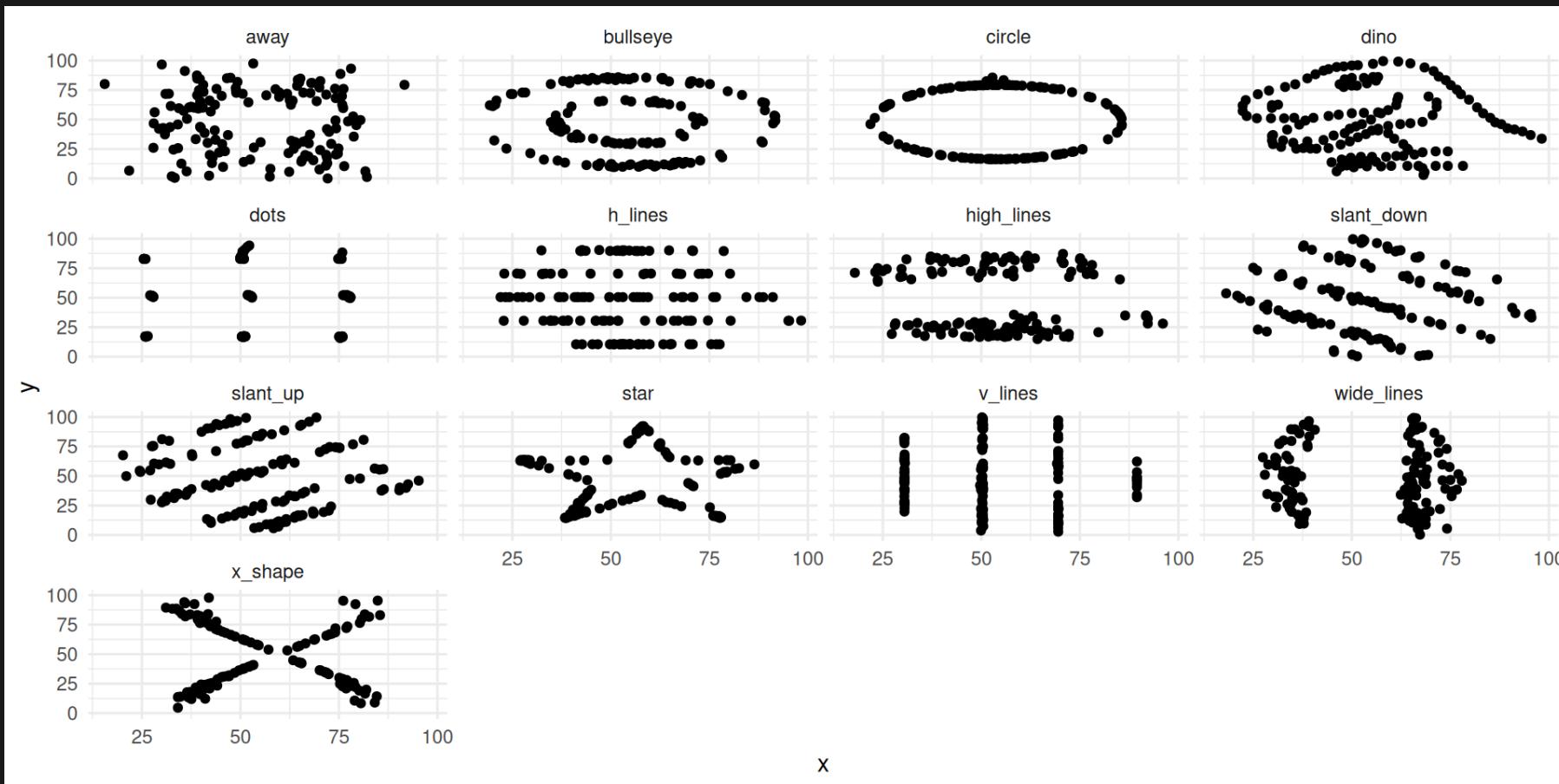
An example

- data contains vars x and y , over 13 different conditions
- import `data/plotme.tsv`, compute μ, σ by `dataset`

dataset	mean_x	sd_x	mean_y	sd_y
away	54.27	16.77	47.83	26.94
bullseye	54.27	16.77	47.83	26.94
circle	54.27	16.76	47.84	26.93
dino	54.26	16.77	47.83	26.94
dots	54.26	16.77	47.84	26.93

Now let's plot this!

But if you **plot** it, you'll see **stark** differences



Why plot? Compact information

Plotting allows you to convey a lot of info

- humans are pattern recognizers
- several geometric objects can convey meaning
 - position (x,y,z)
 - color, size, shape
- you can combine multiple plots into infographics

Good and bad plots

Good plots, bad plots

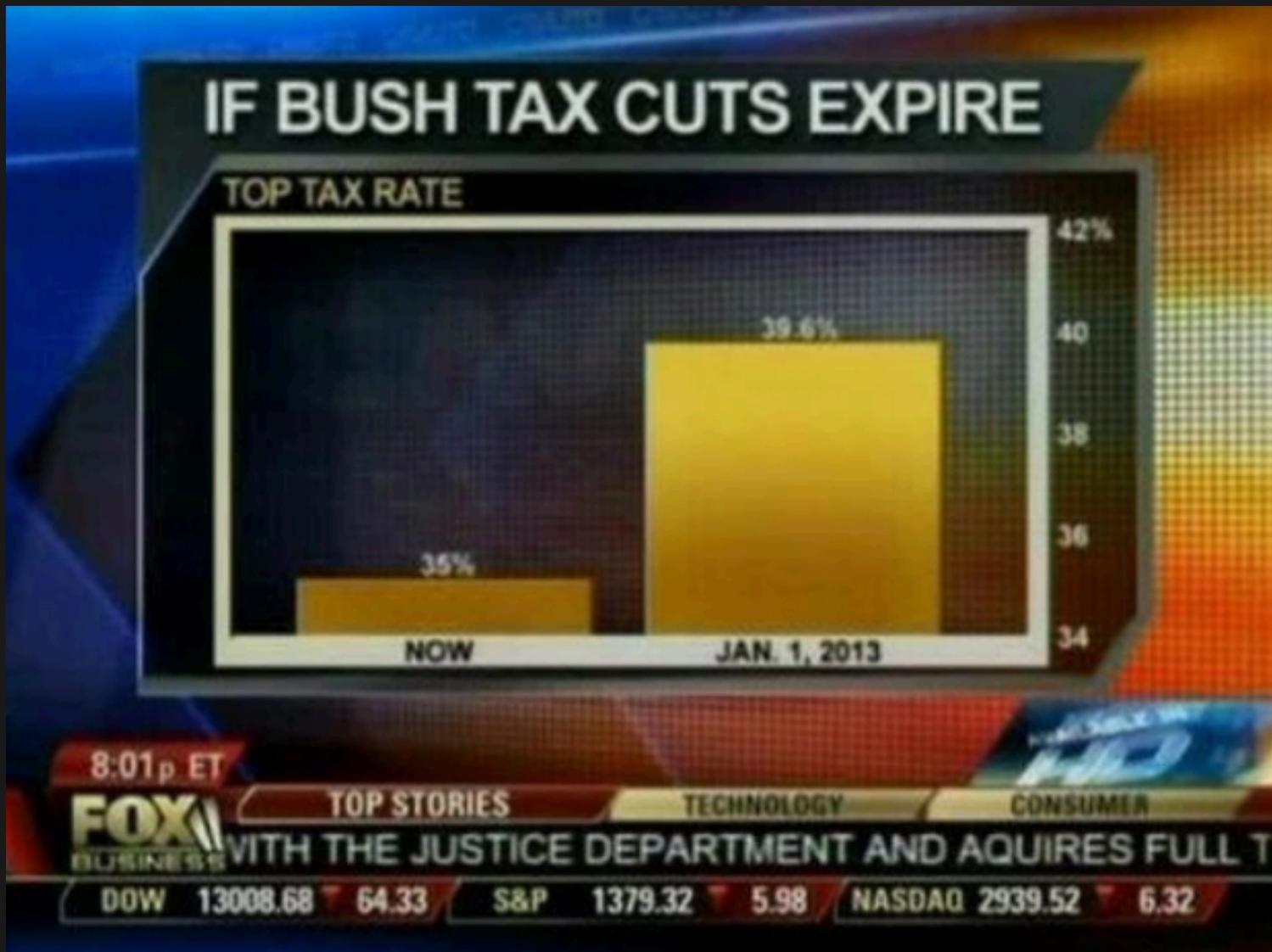
- It is important to make *good* plots
- i.e., plots that *look good*...
- ...and are *honest* to the data
- it is *very* easy to *hide* the message rather than *highlighting* it
- it is *very* easy to *mislead* with a plot

let's start with **bad plots**. *Why* are they bad?

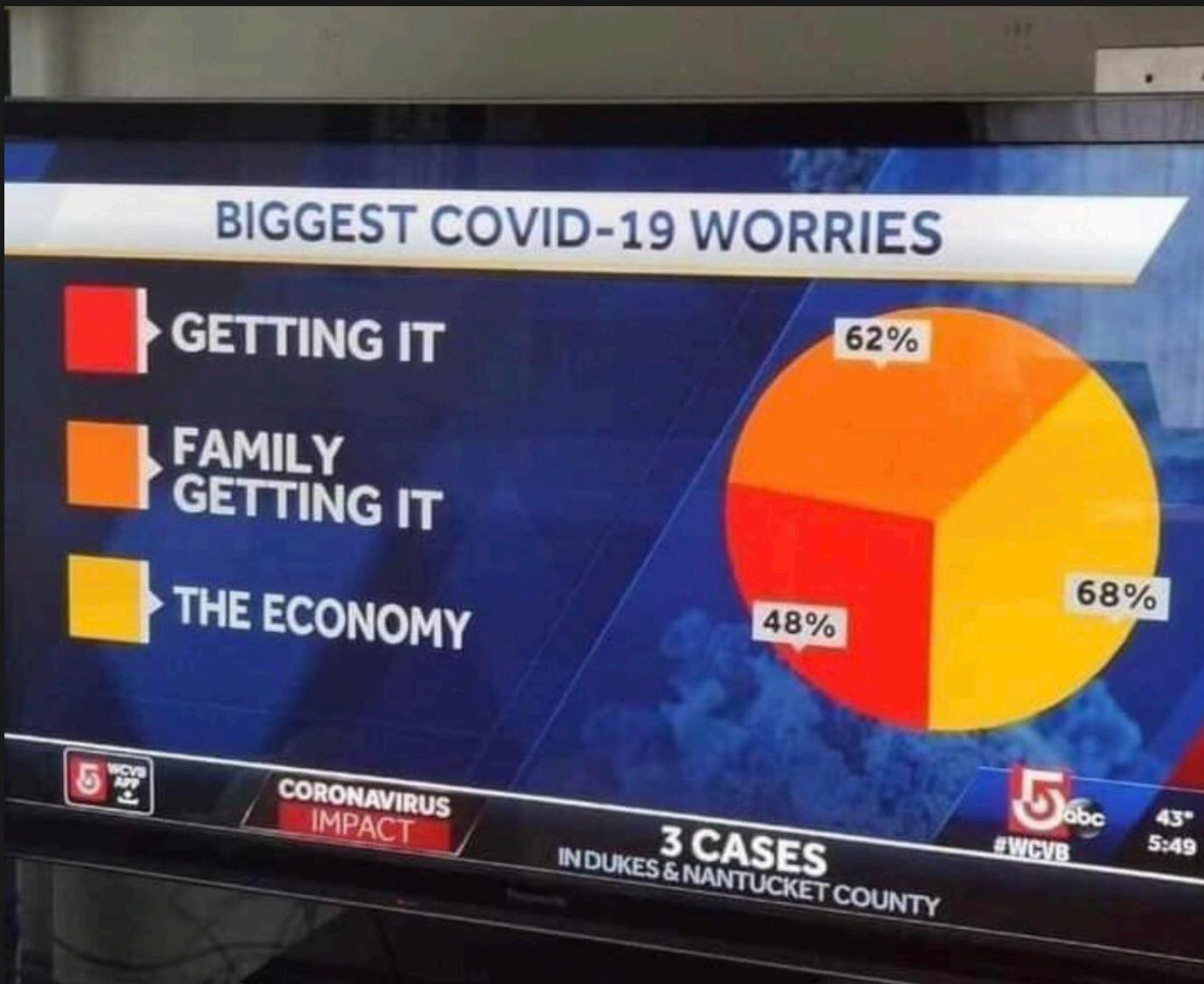
Bad plotting 1



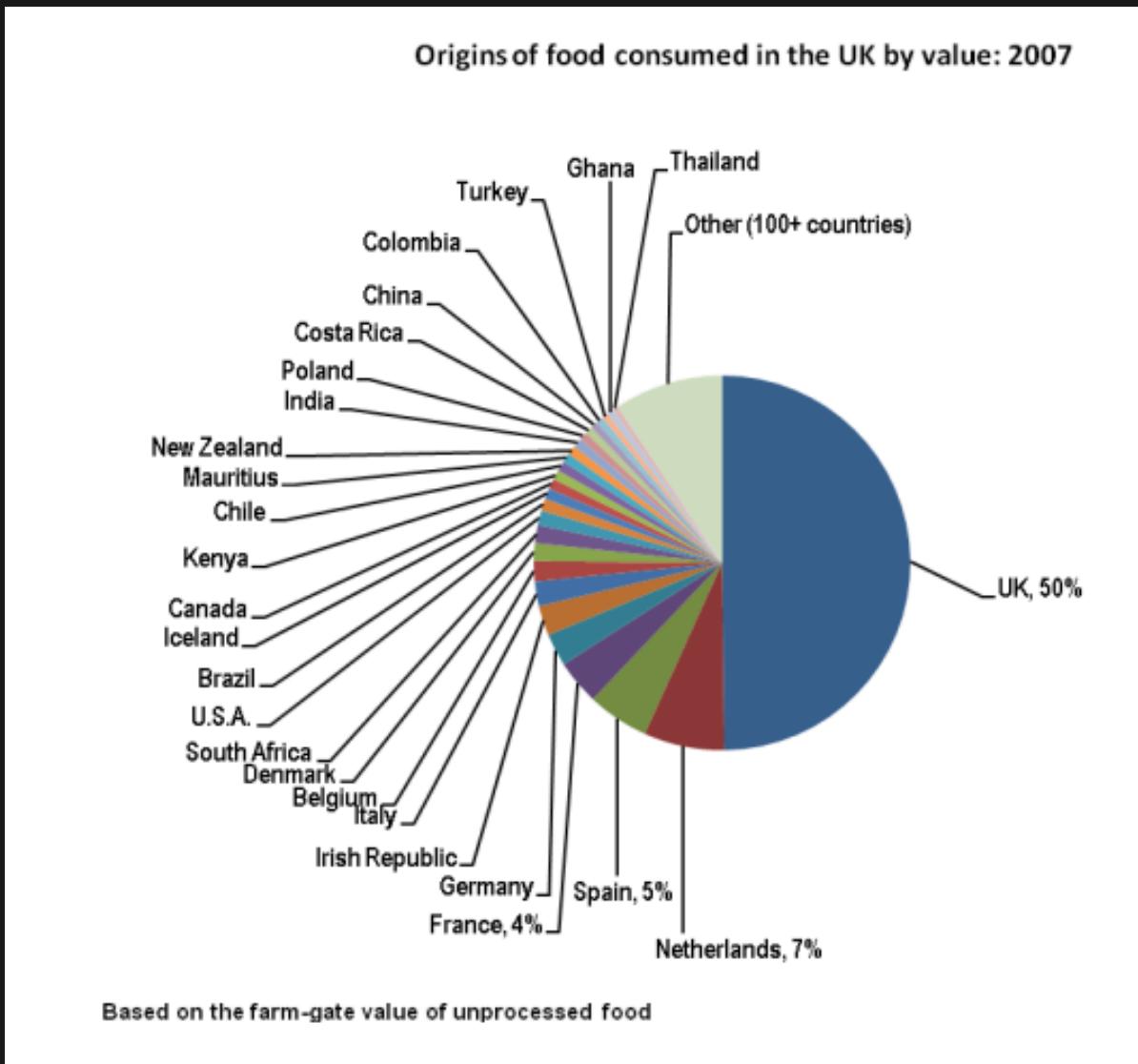
Bad plotting 2



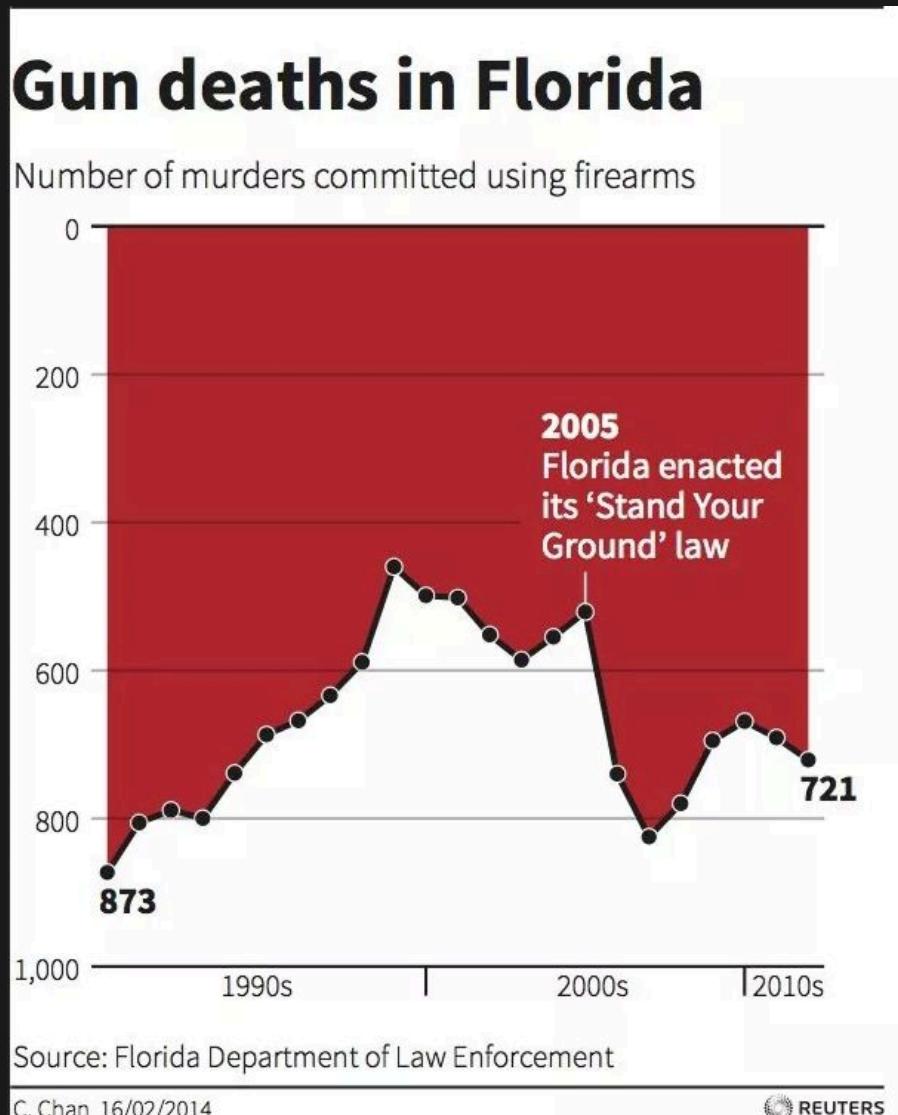
Bad plotting 3



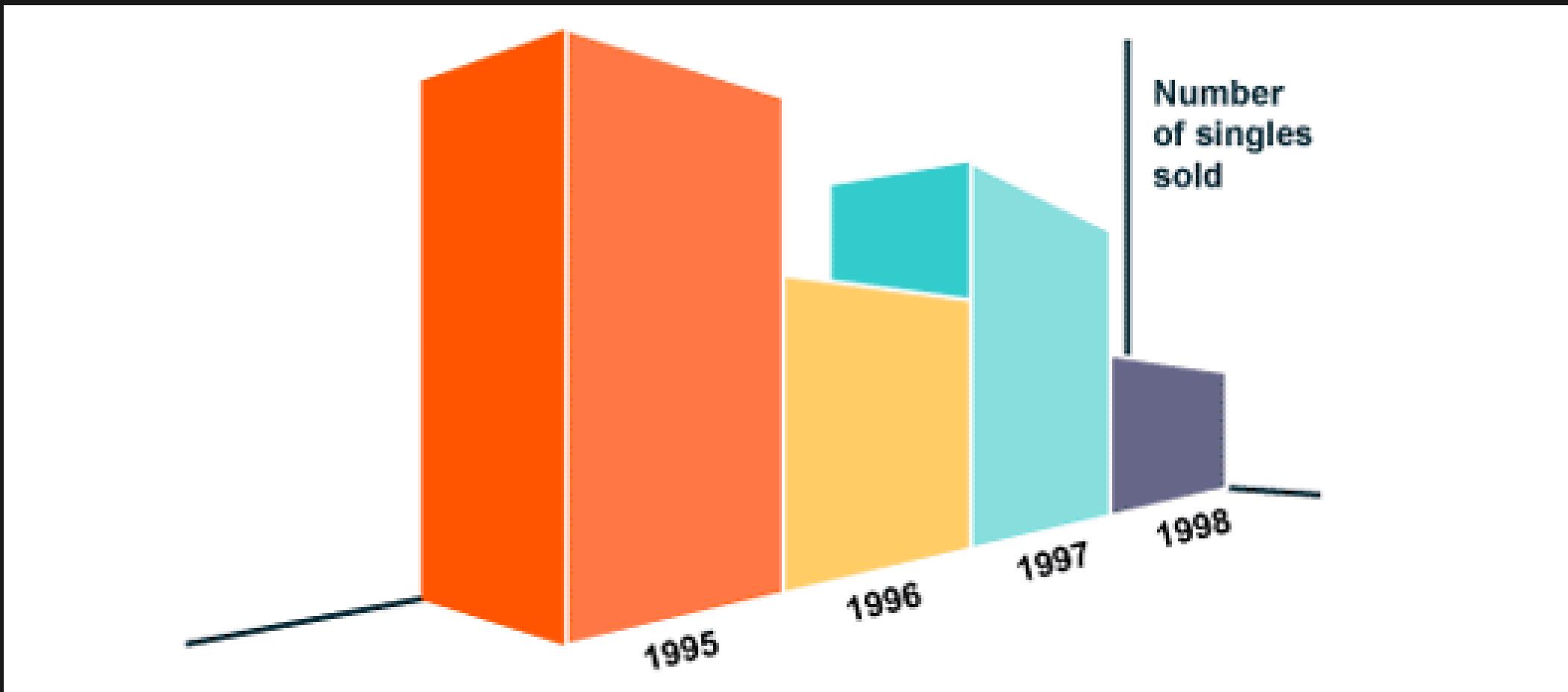
Bad plotting 4



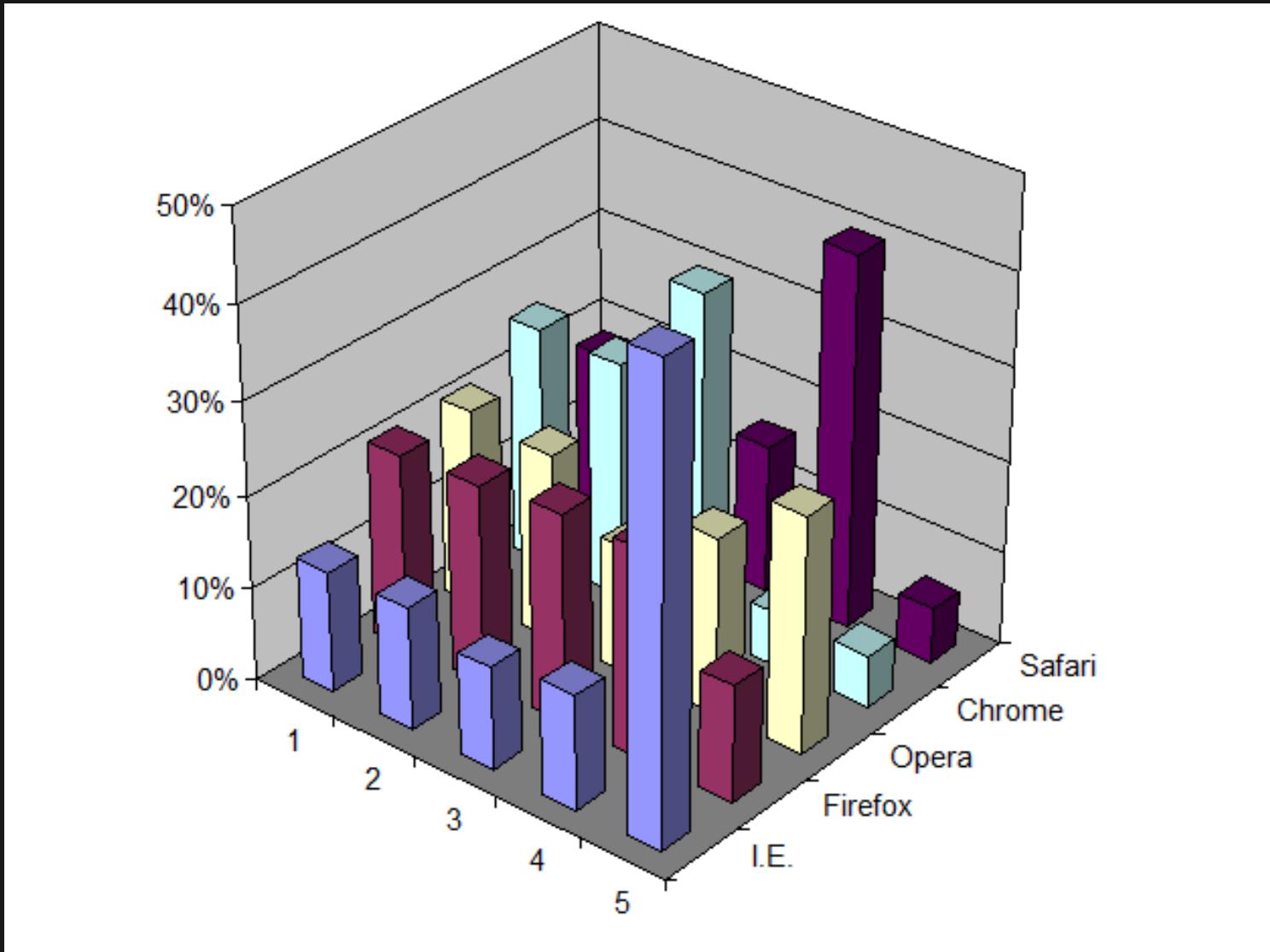
Bad plotting 5



Bad plotting 6



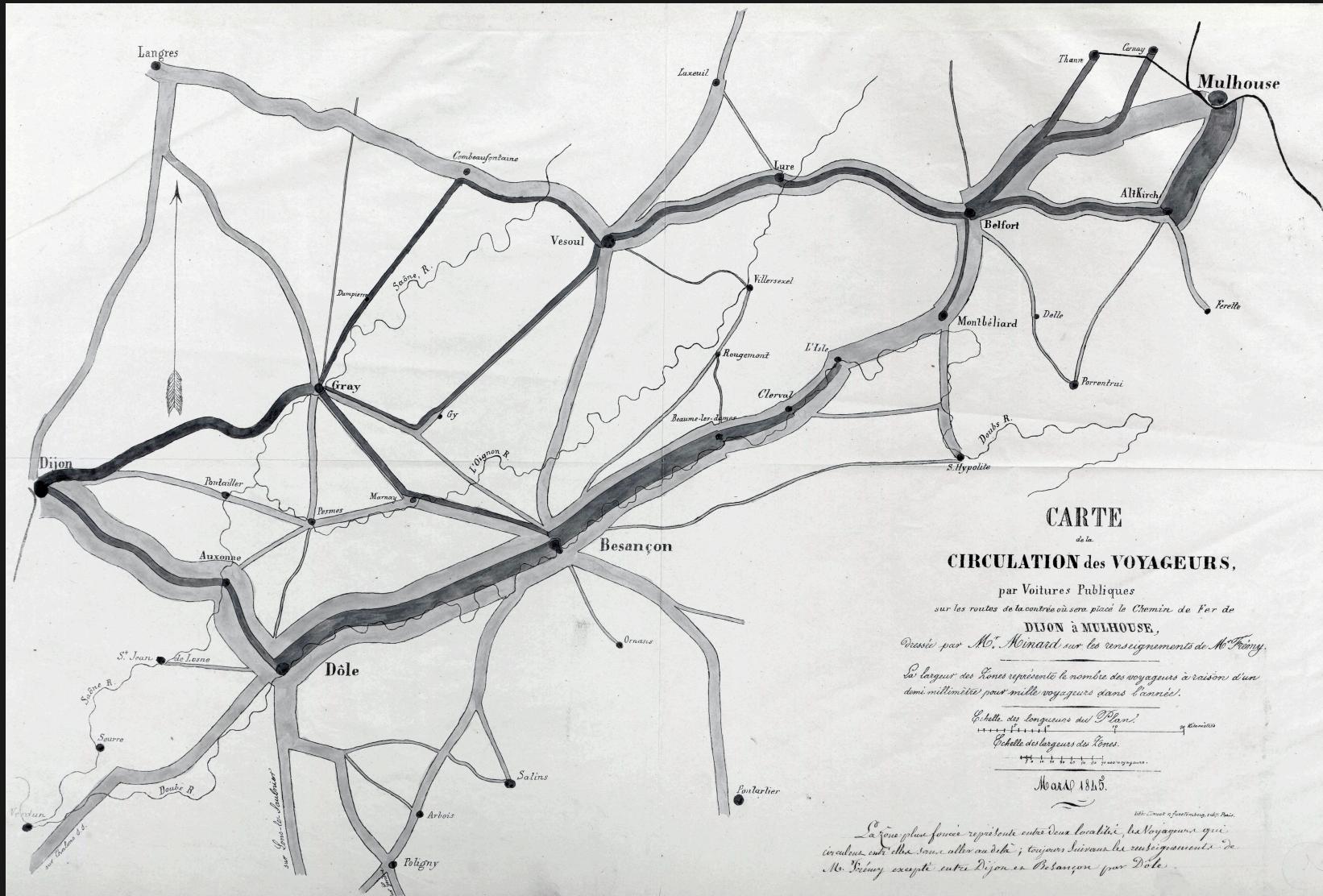
Bad plotting 7 (really, **NO** 3D plots)



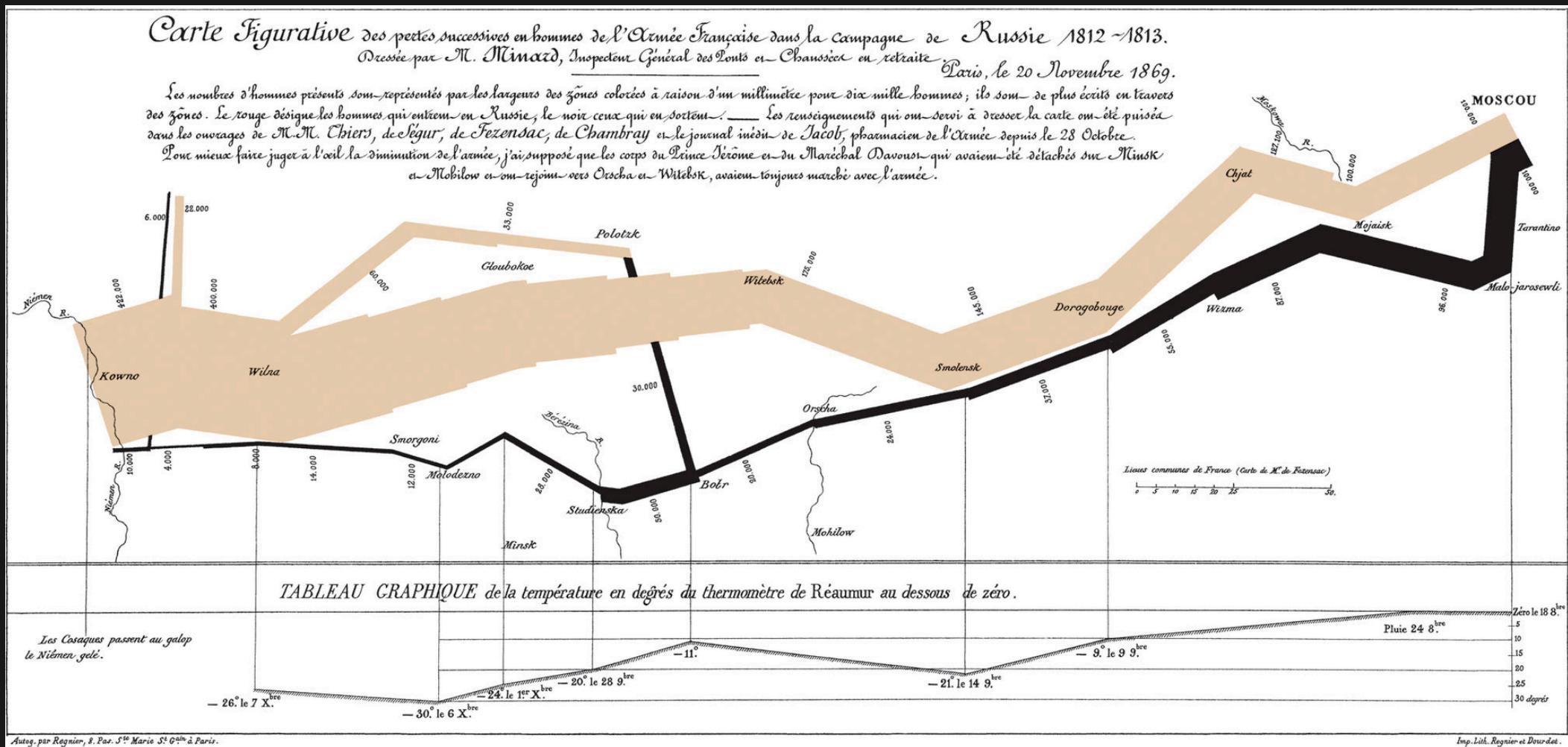
The road to good plotting

- know your data
- think before you hit the enter button
- sketch on paper first
- be honest
- draw your axis first
- choose your visualization wisely
- a good plot: lots of precise information in a concise way.

Good plots, 1

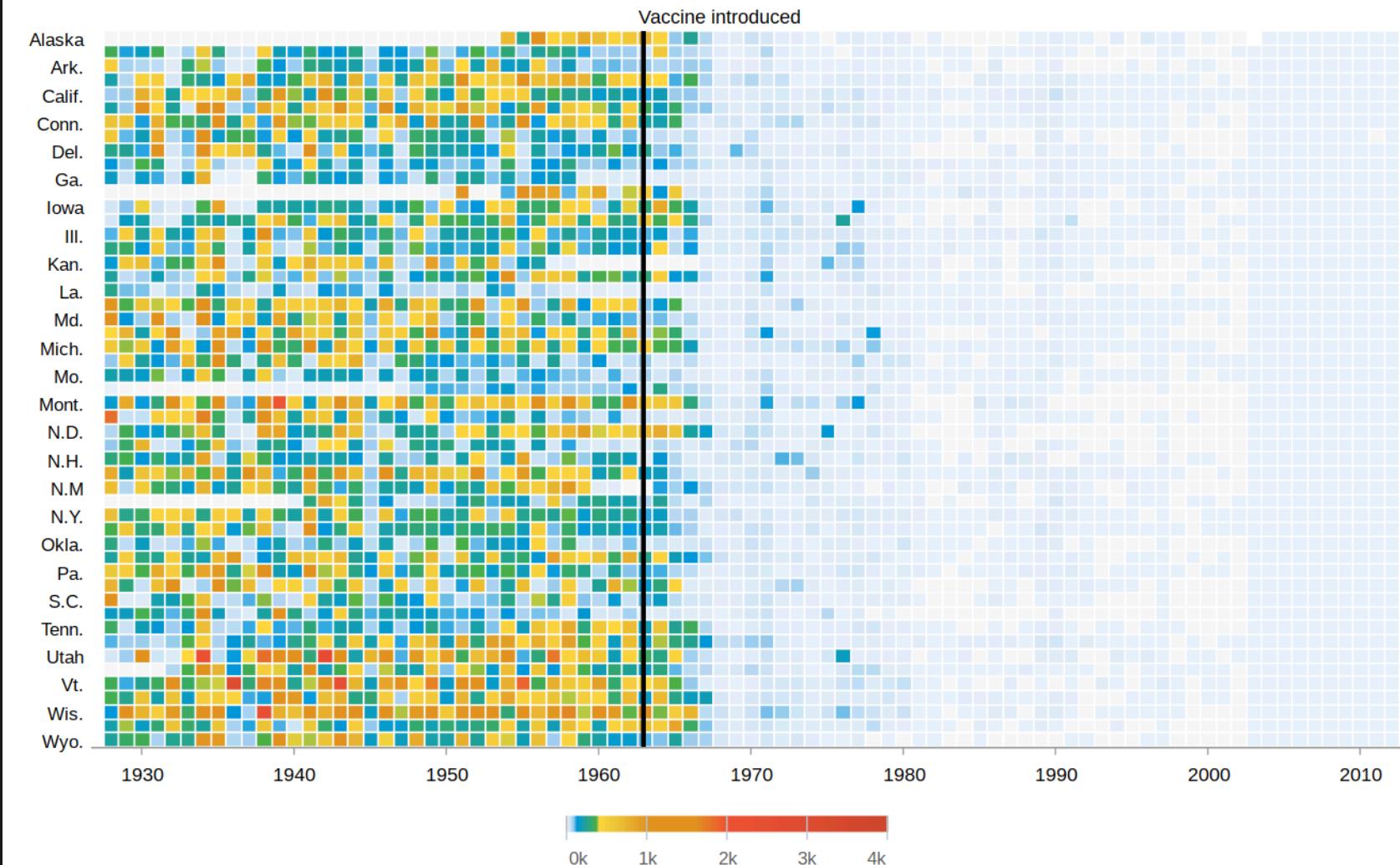


Good plots, 2

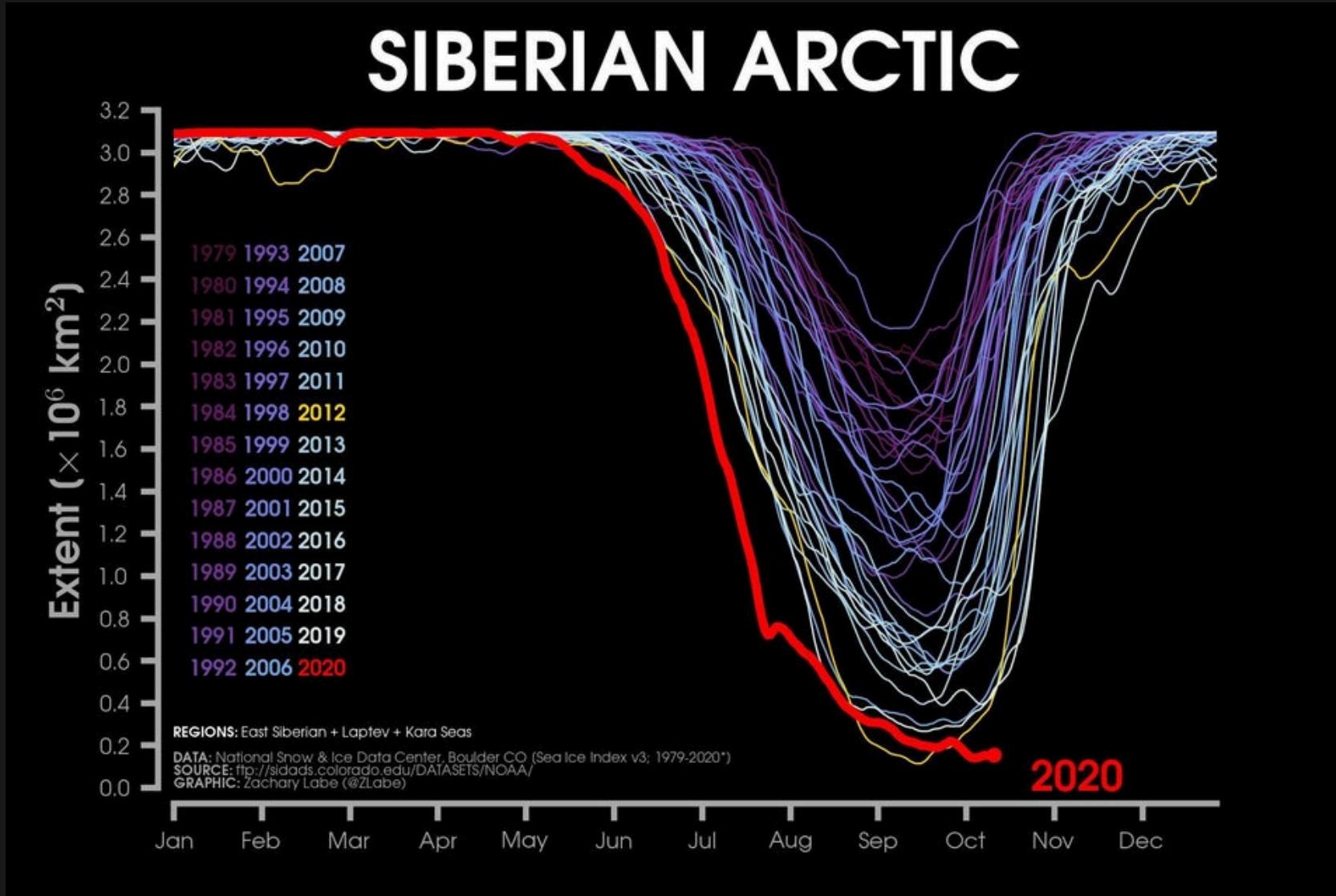


Good plots, 3

Measles



Good plots, 4



ggplot2: the basics

Some data

We will start by using the *built-in dataset mpg*

```
1 mpg
# A tibble: 234 × 11
  manufacturer model      displ  year   cyl trans drv   cty   hwy fl
  <chr>        <chr>     <dbl> <int> <int> <chr> <chr> <int> <int> <chr>
1 audi         a4         1.8   1999     4 auto... f       18     29 p
2 audi         a4         1.8   1999     4 manu... f       21     29 p
3 audi         a4          2    2008     4 manu... f       20     31 p
4 audi         a4          2    2008     4 auto... f       21     30 p
5 audi         a4         2.8   1999     6 auto... f       16     26 p
```

A look at the data

A look at the data

```
1 skimr::skim(mpg)
```

Data summary

Name	mpg
Number of rows	234
Number of columns	11
<hr/>	
Column type frequency:	
character	6
numeric	5

Group variables

None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	en
manufacturer	0	1	4	10	
model	0	1	2	22	
trans	0	1	8	10	
drv	0	1	1	1	
fl	0	1	1	1	
class	0	1	3	10	

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd
displ	0	1	3.47	1.29
year	0	1	2003.50	4.51
cyl	0	1	5.89	1.61
cty	0	1	16.86	4.26
hwy	0	1	23.44	5.95

Why `ggplot2`?

Advantages of `ggplot2`

- consistent underlying grammar of graphics
- plot specification at a high level of abstraction
- very flexible
- mature and complete graphics system
- theme system for polishing plot appearance
- many users, active, fast & competent support
- arguably the best plotting system on the planet

Grammar of graphics

Independently specify plot **building blocks** & combine them to create *any* plot.

Starting from the basics

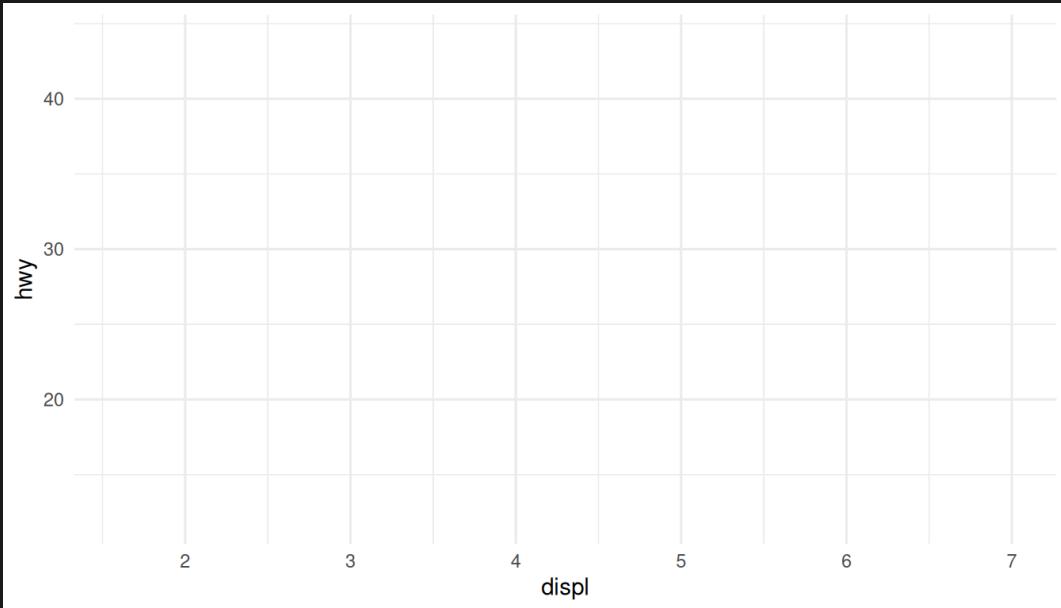
As in a grammar the minimal sentence is a subject in a plot
the minimal object is data

```
1 p <- ggplot(mpg)
```

basics

In a grammar, you need a verb. In plots, this is axis

```
1 p <- p + aes(x = displ, y = hwy)  
2 p
```

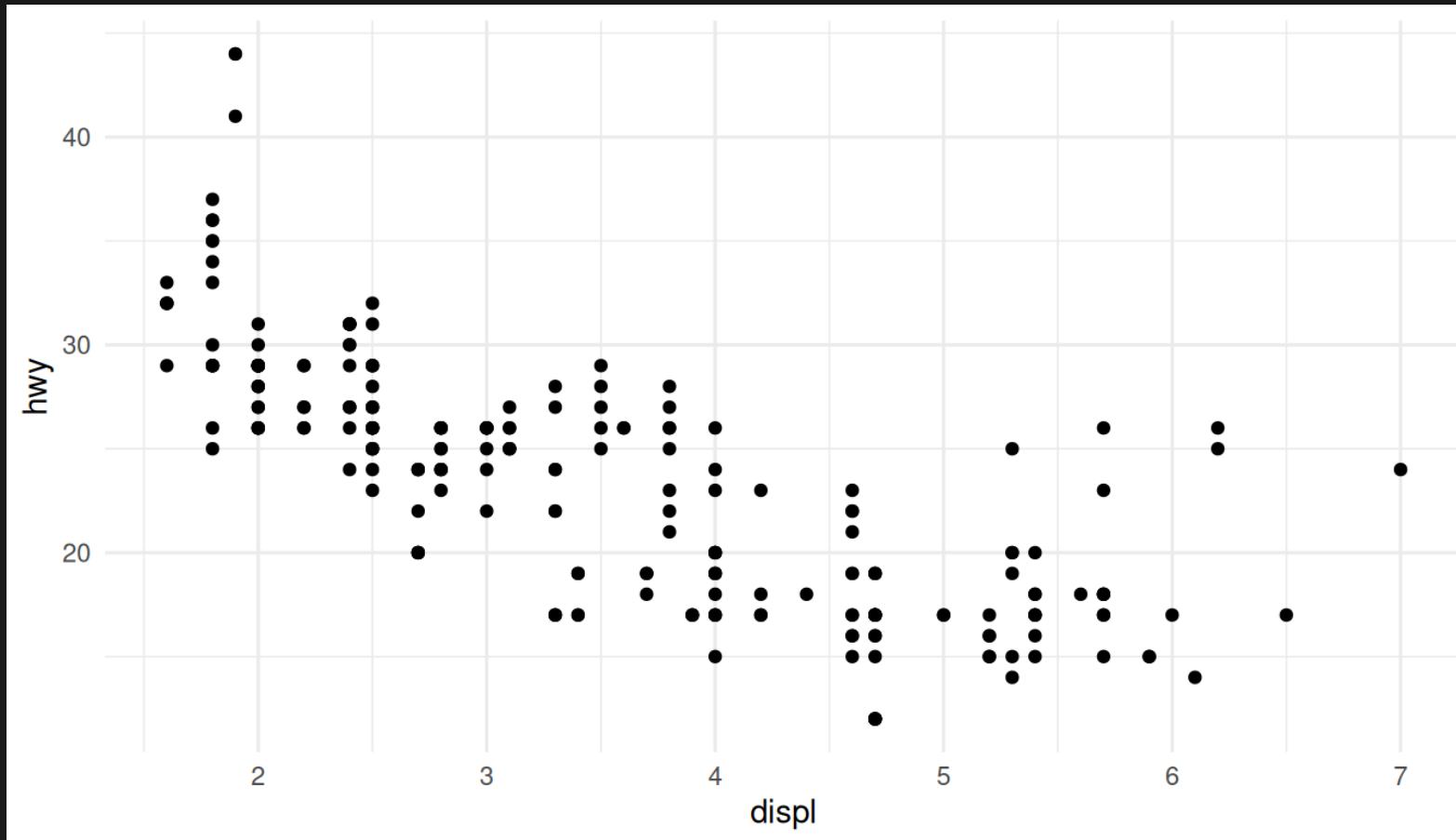


Still no real plot generated!

Generating a plot

But you also need an object. In ggplot, this is *geoms*

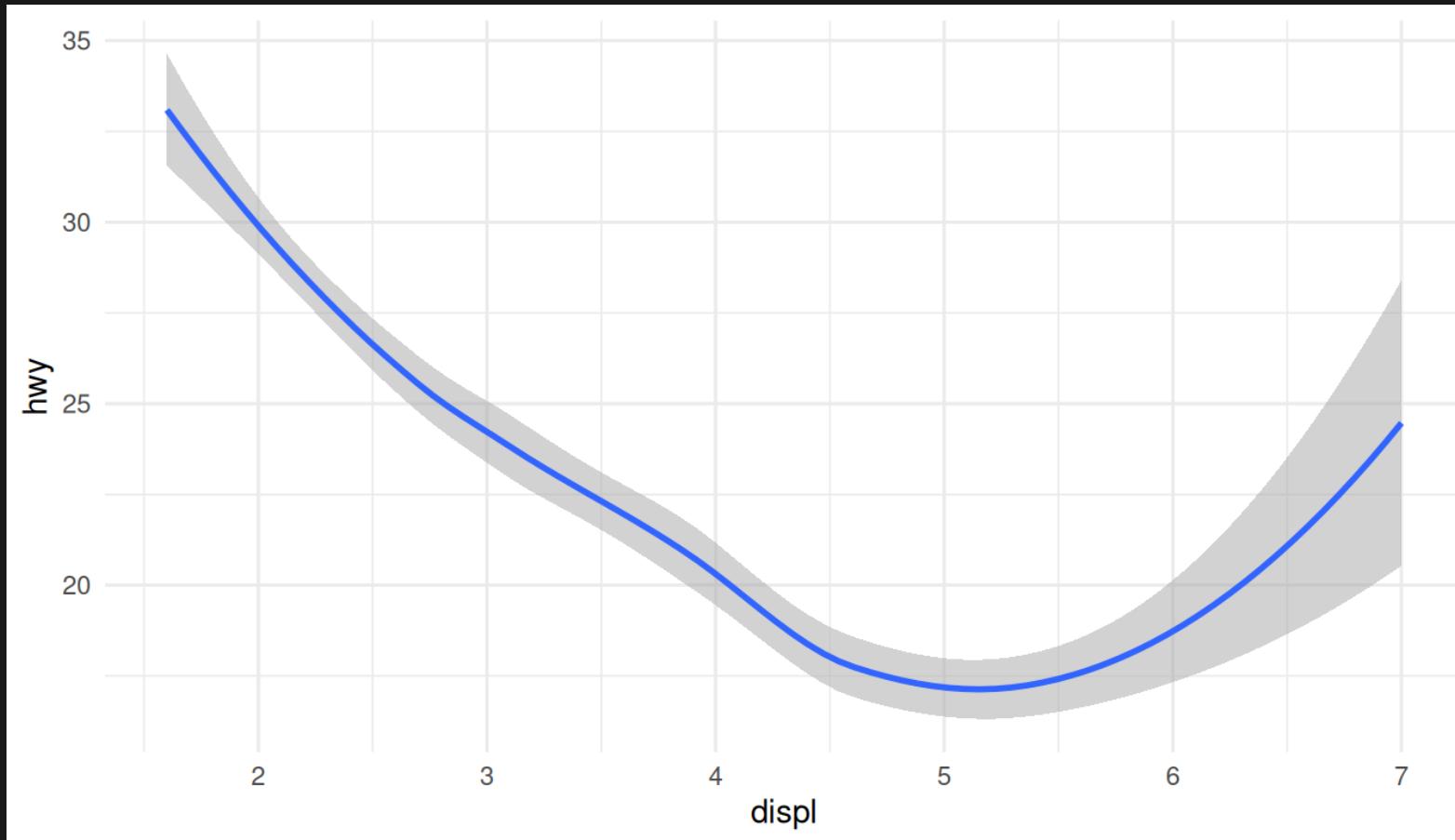
```
1 p + geom_point()
```



Generating a plot, 2

But you also need an object. In ggplot, this is *geoms*

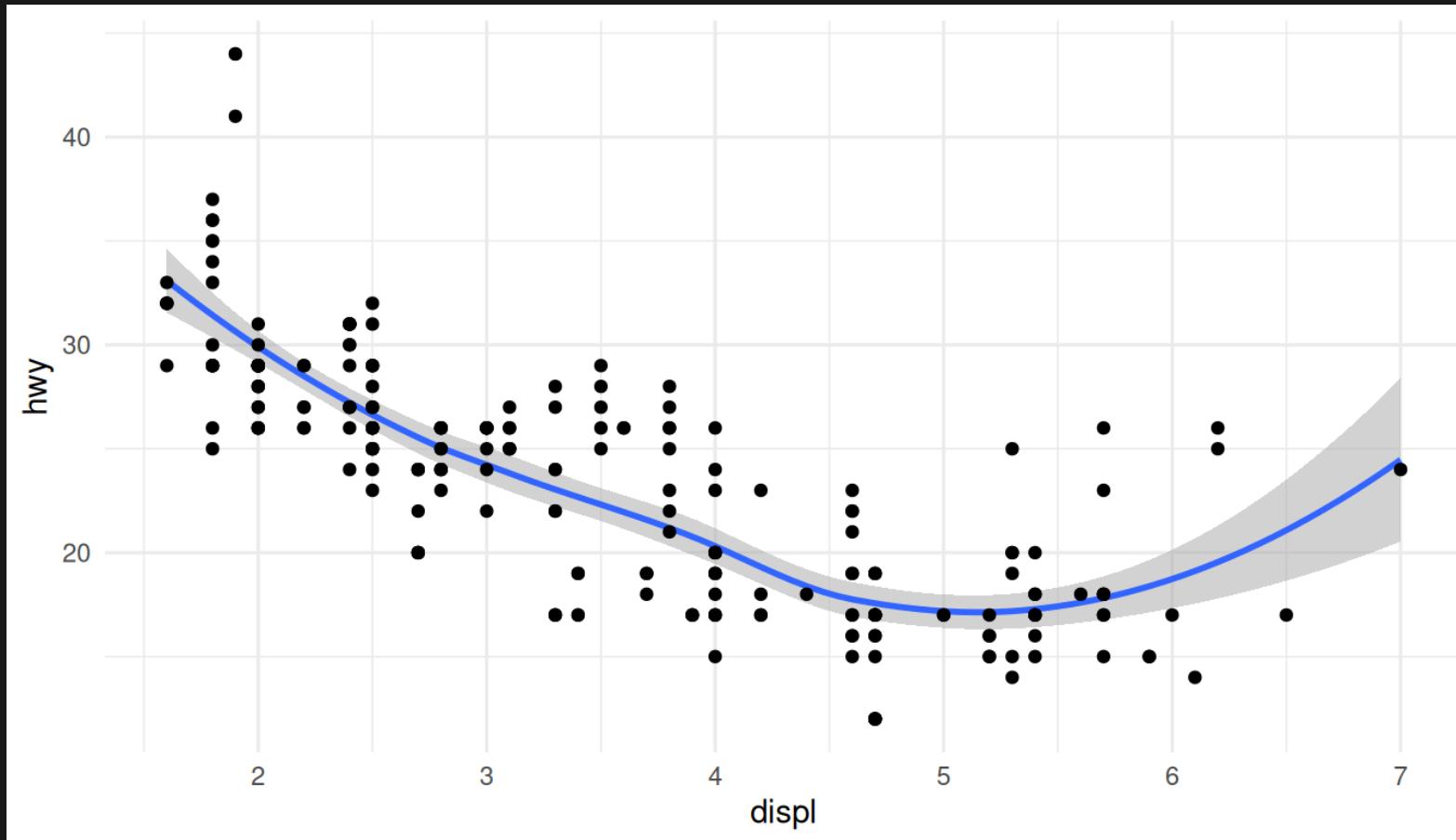
```
1 p + geom_smooth()
```



Generating a plot, 3

You can add (+) as many *geoms* as you wish

```
1 p + geom_smooth() + geom_point()
```



The beauty of a grammar metaphor

- once you get the main idea, **adding** things is easy
- a plot is a **sentence made with data**
- you add layers with **+**
- as you would add words to a sentence
- as in grammar you use adjectives to give more nuanced meaning, in plots you could use **+** to add color, fill, size, shape, etc...

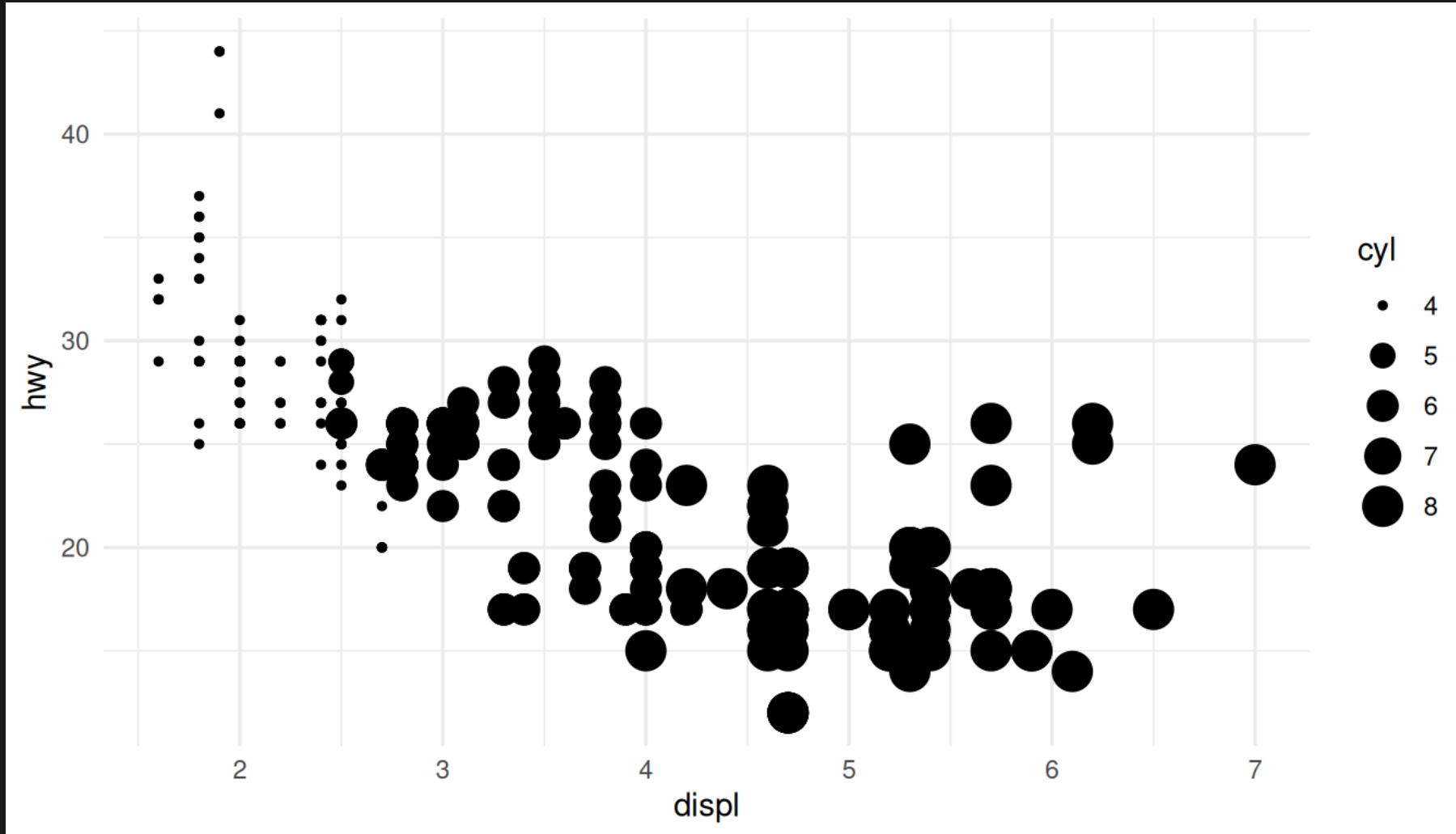
Adding meaning: color

```
1 p + geom_point(aes(color=class))
```



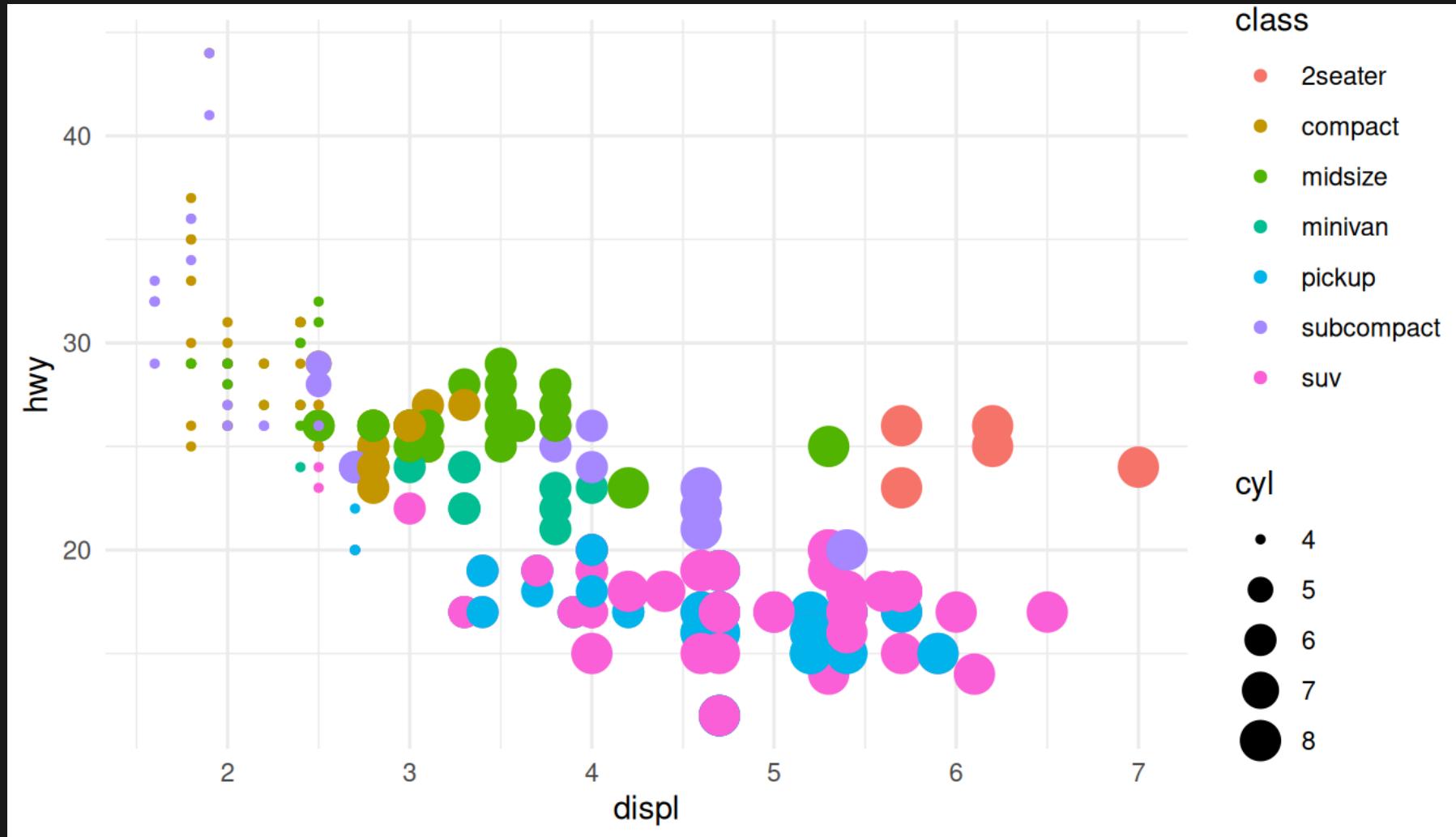
Adding meaning: size

```
1 p + geom_point(aes(size=cyl))
```



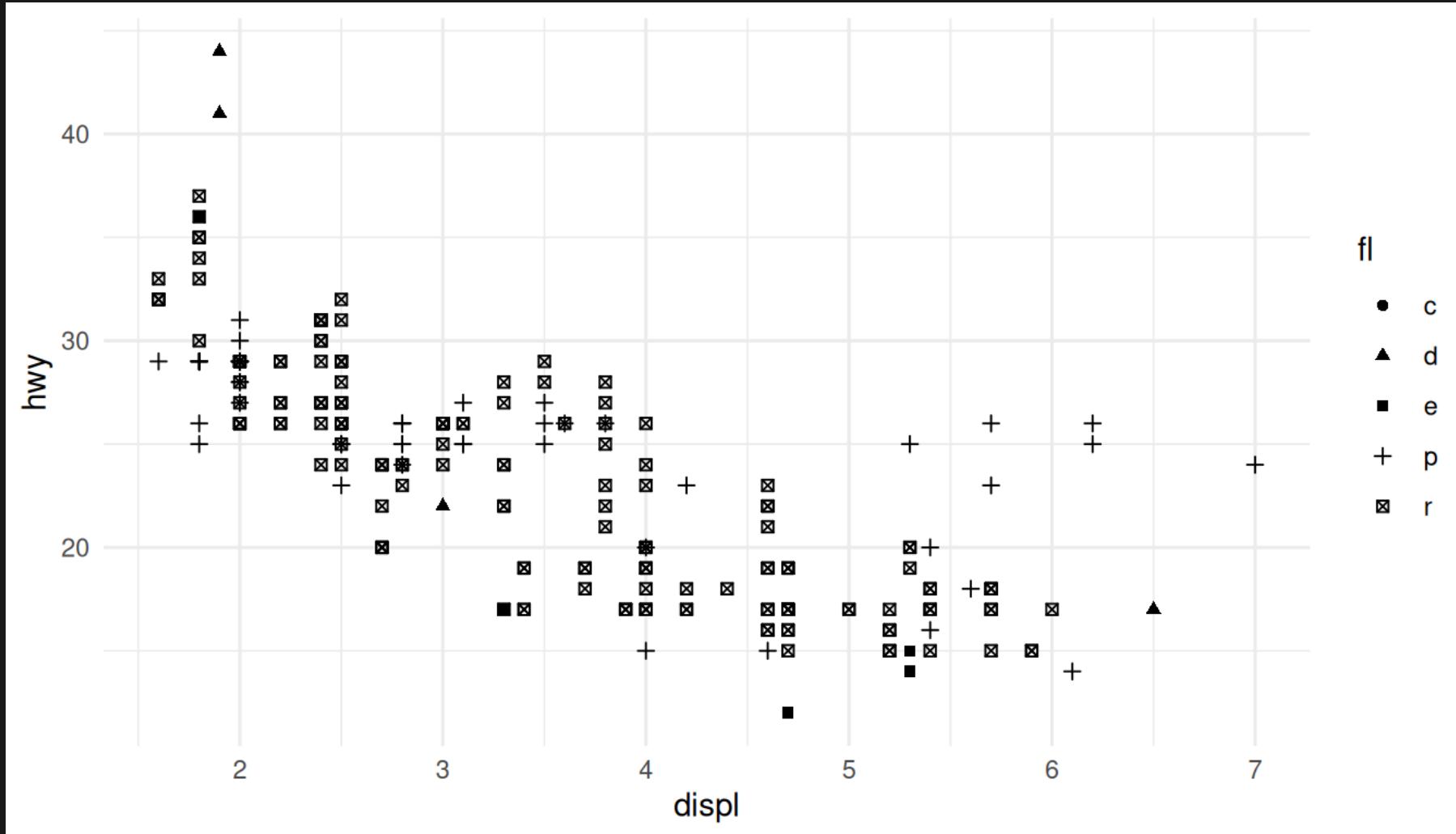
Adding meaning: color AND size

```
1 p + geom_point(aes(size = cyl, color=class))
```



Adding meaning: shape

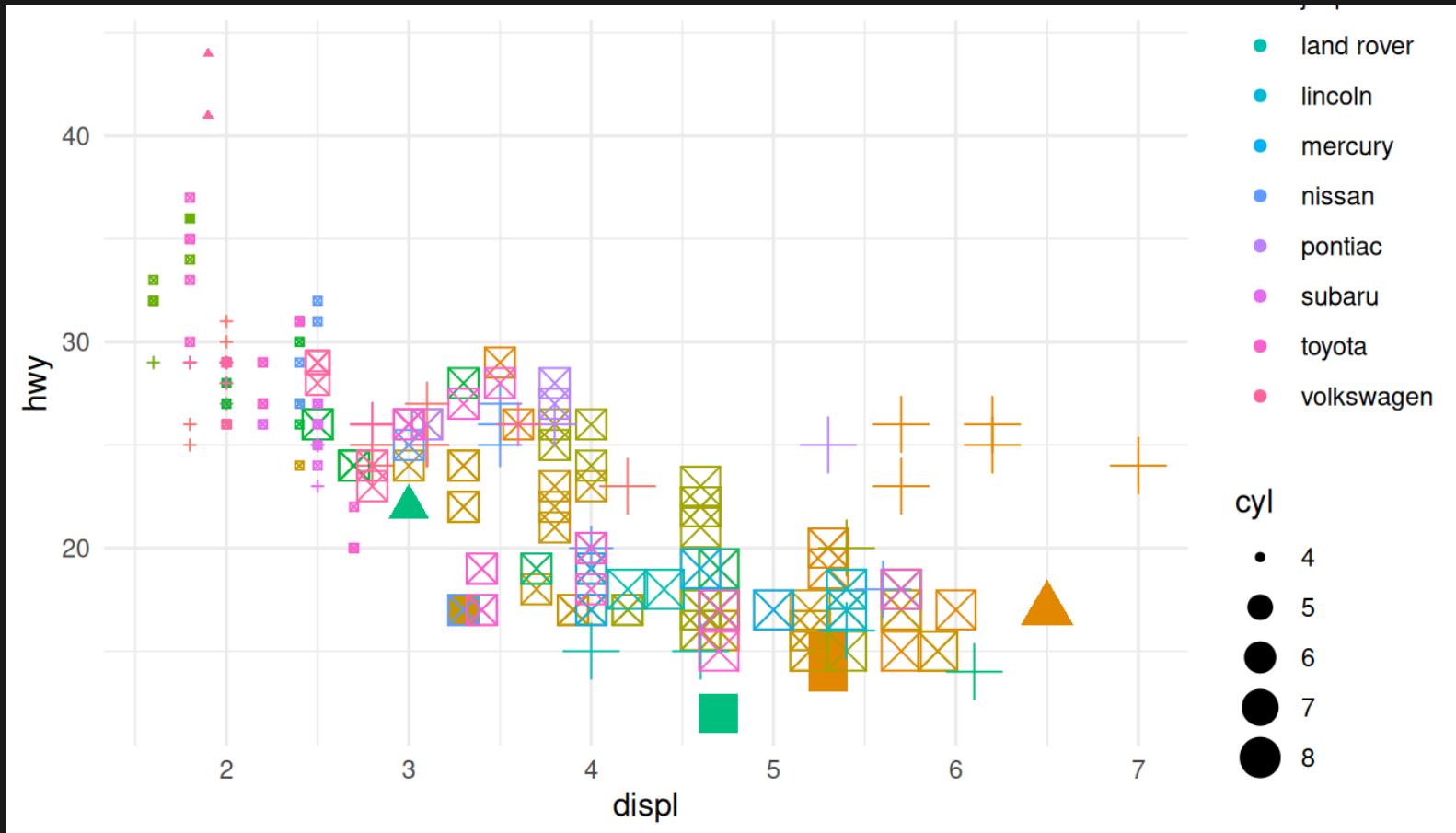
```
1 p + geom_point(aes(shape=fl))
```



Adding meaning: all together (...)

Possibly not a good idea though

```
1 p + geom_point(aes(color=manufacturer, shape = fl, size = cyl))
```



Recap so far

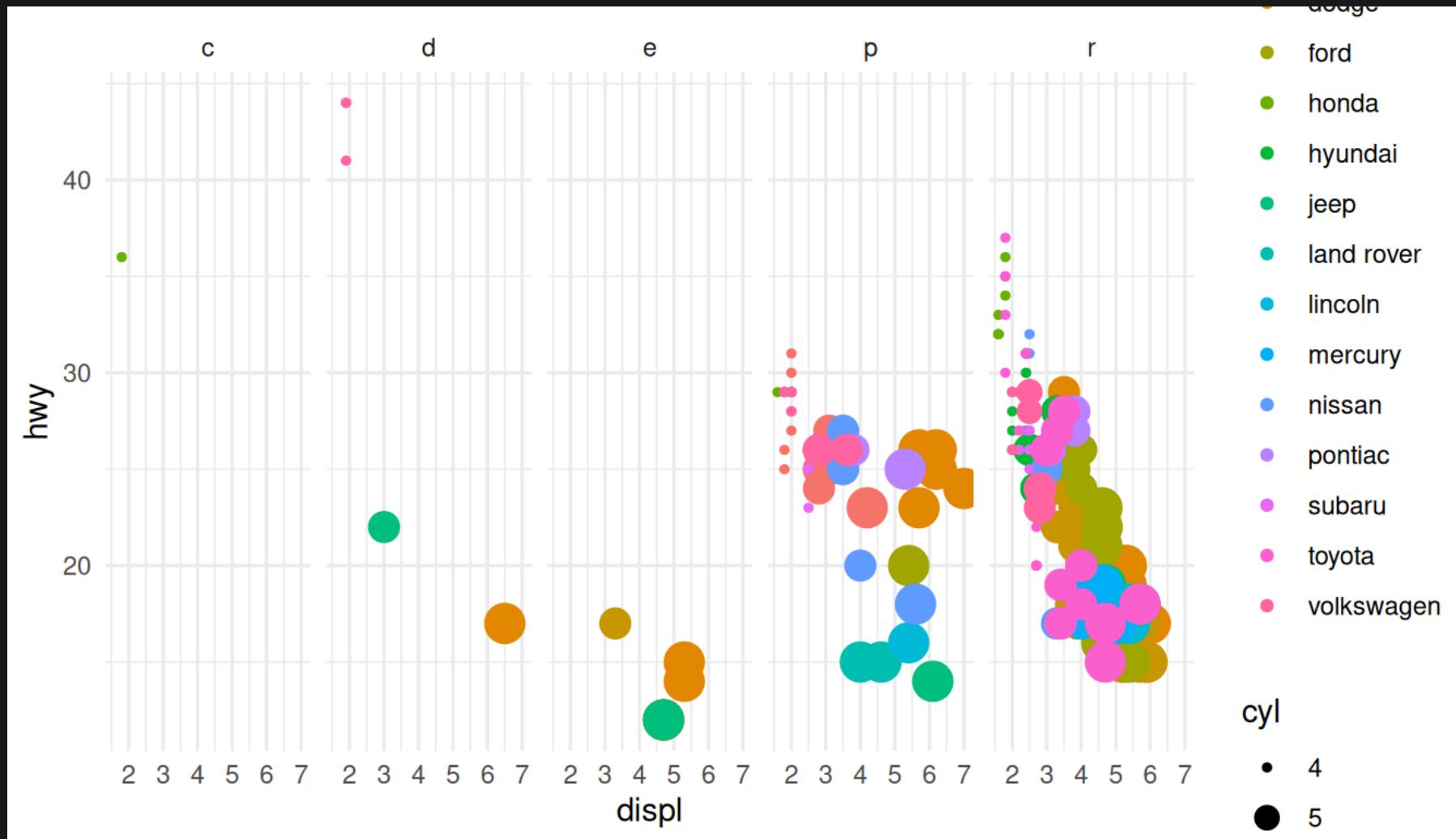
- ggplot works like a grammar
- start with `ggplot()`
- first argument: *data*: `ggplot(df, ...)`
- then map variables to `aesthetics` (`x`, `y`, `color`, `fill`, ...)
- `ggplot(df, aes(dimension = variable))`
- then add meaning with geometric objects: `geom_*`
- notes:
 - `geoms` inherit the `aes` of the plot if not specified
 - all variables mapped to `aes` vary with the data

Facets

- sometimes sentences become too long
- it is useful to **split** them up in shorter sentences
- you could first talk about a car, *then* another one
- in plots, you can split up the plot along a **variable**
- one plot is drawn **for** each **level** of a given variable

Facets

```
1 p + geom_point(aes(color=manufacturer, size = cyl))+facet_grid(.~fl)
```



More details on the grammar

Once your main plot is done, you can tweak it

- coordinate functions (changing the axis)
- scale functions (changing how geoms look)
- theme functions (changing how the plot looks)

We will do this in Lecture 5 – advanced plotting

ggplot2: gallery

Exploring data: one variable

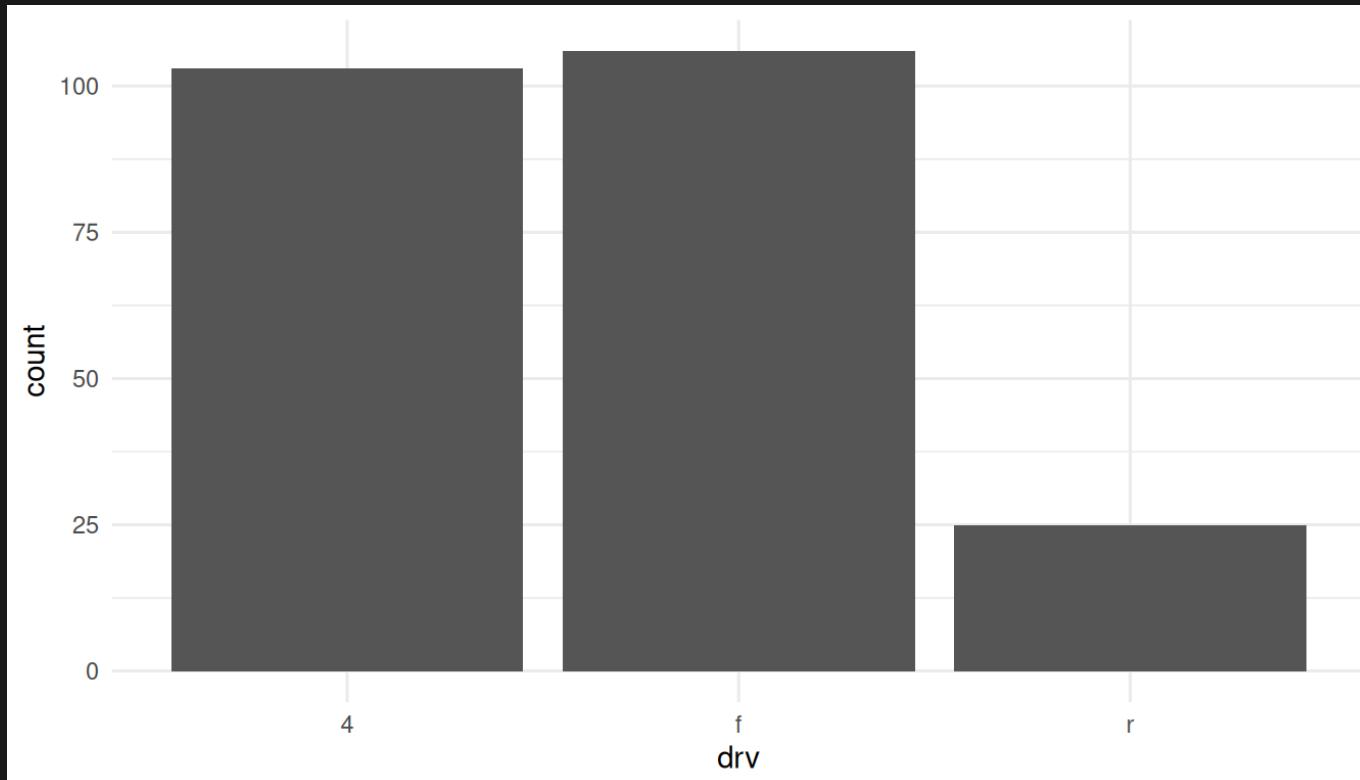
Plot types depend on the variable type

- *one-variable plots, discrete variable*: `barplot`
- *one-variable plots, continuous variable*: `distribution`, `density`

Barplots

- let's look at the drive type of the cars: front, rear, or 4wd

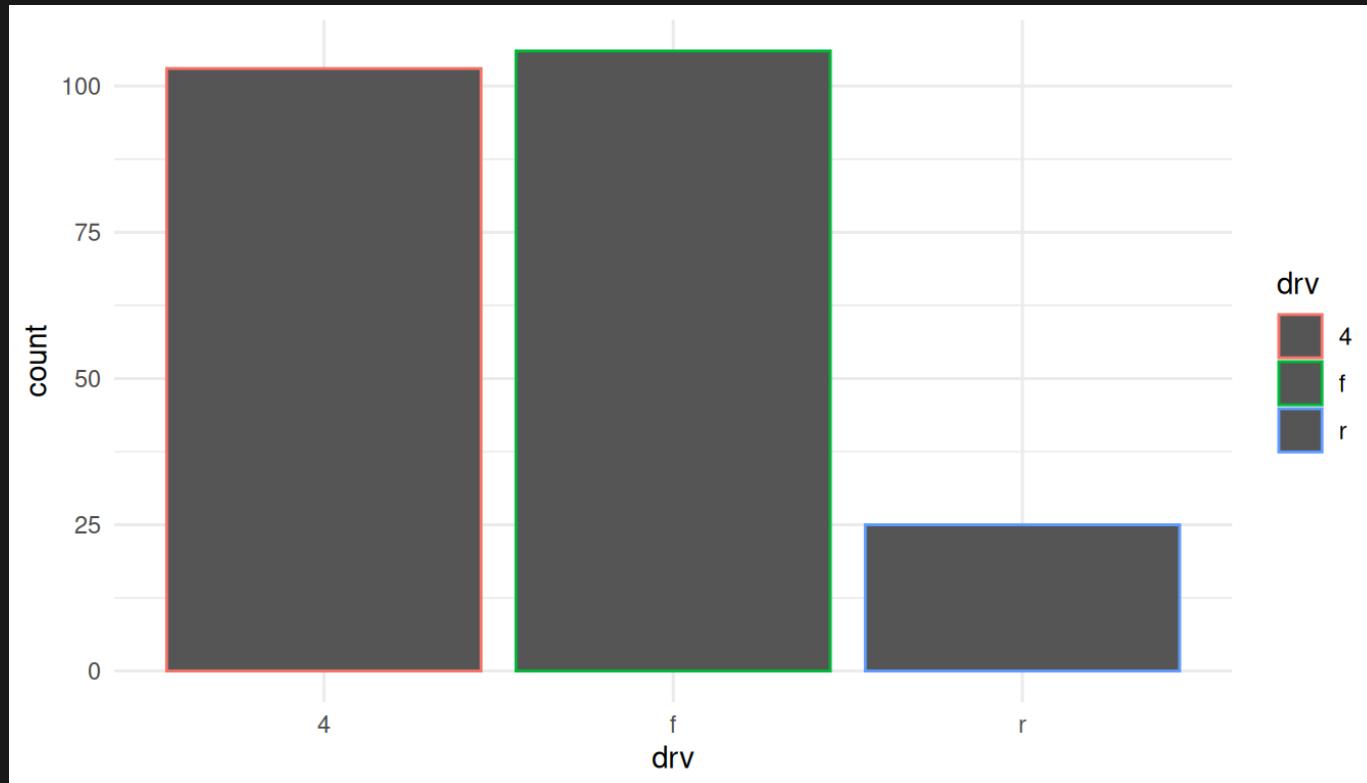
```
1 p <- ggplot(mpg, aes(drv))  
2 p + geom_bar()
```



Barplots

- not so fancy. should we add color?

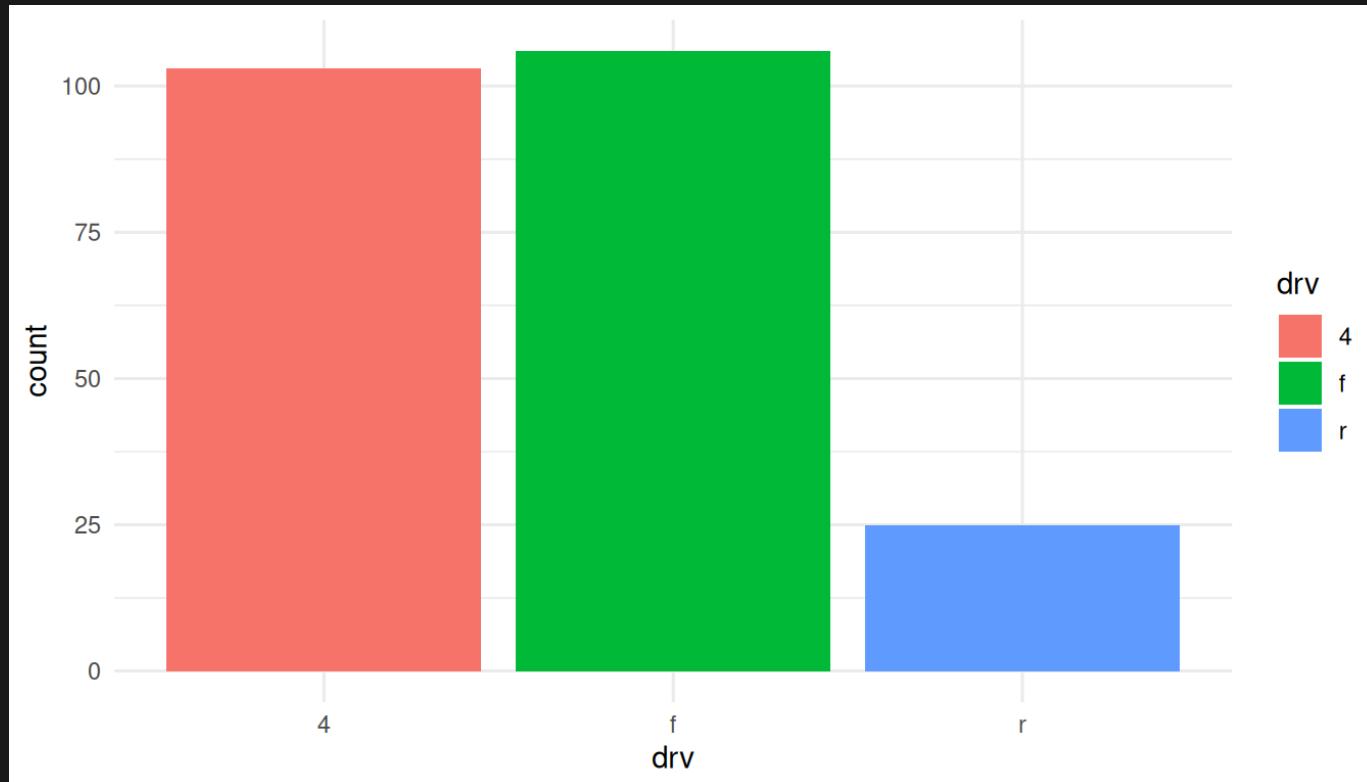
```
1 p <- ggplot(mpg, aes(drv))  
2 p + geom_bar(aes(color=drv))
```



Barplots

- ups. Maybe we meant fill?

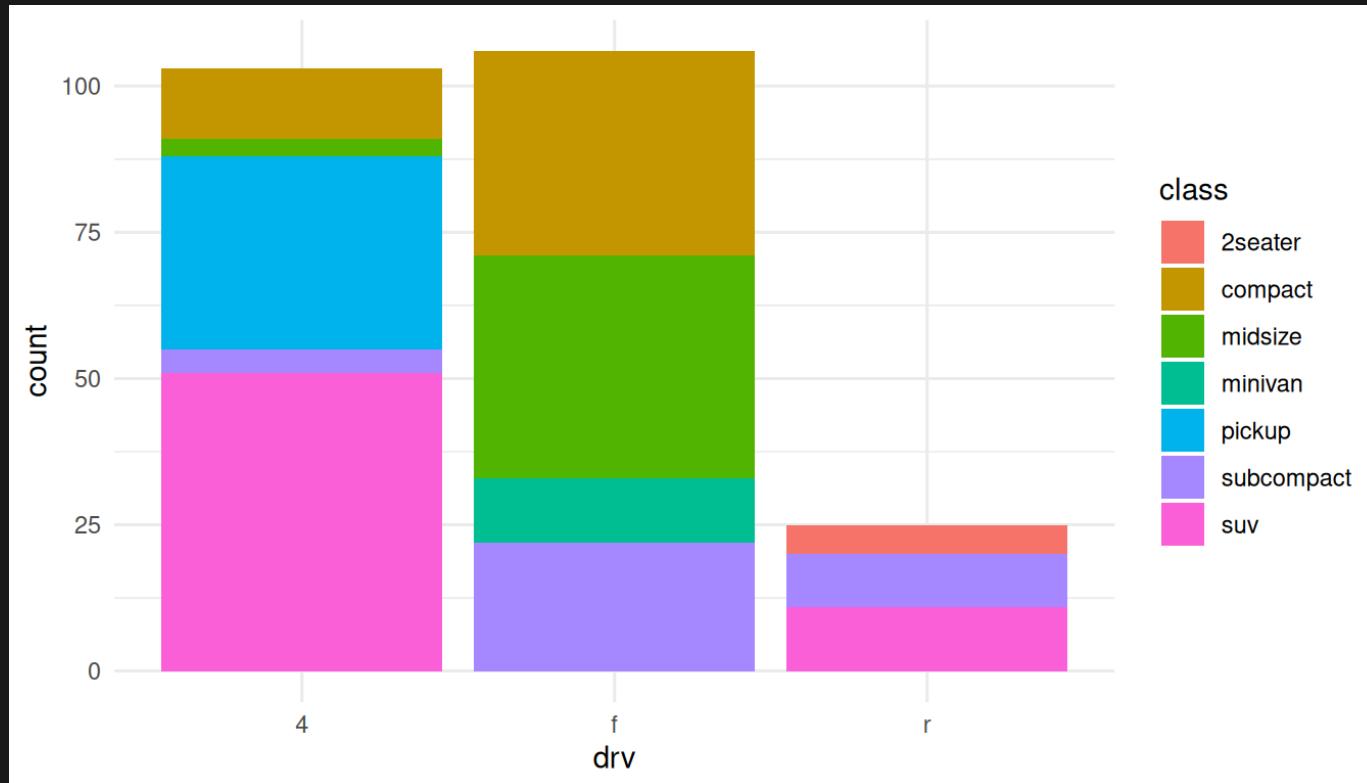
```
1 p <- ggplot(mpg, aes(drv))  
2 p + geom_bar(aes(fill=drv))
```



Barplots

- what if we cross it with another variable?

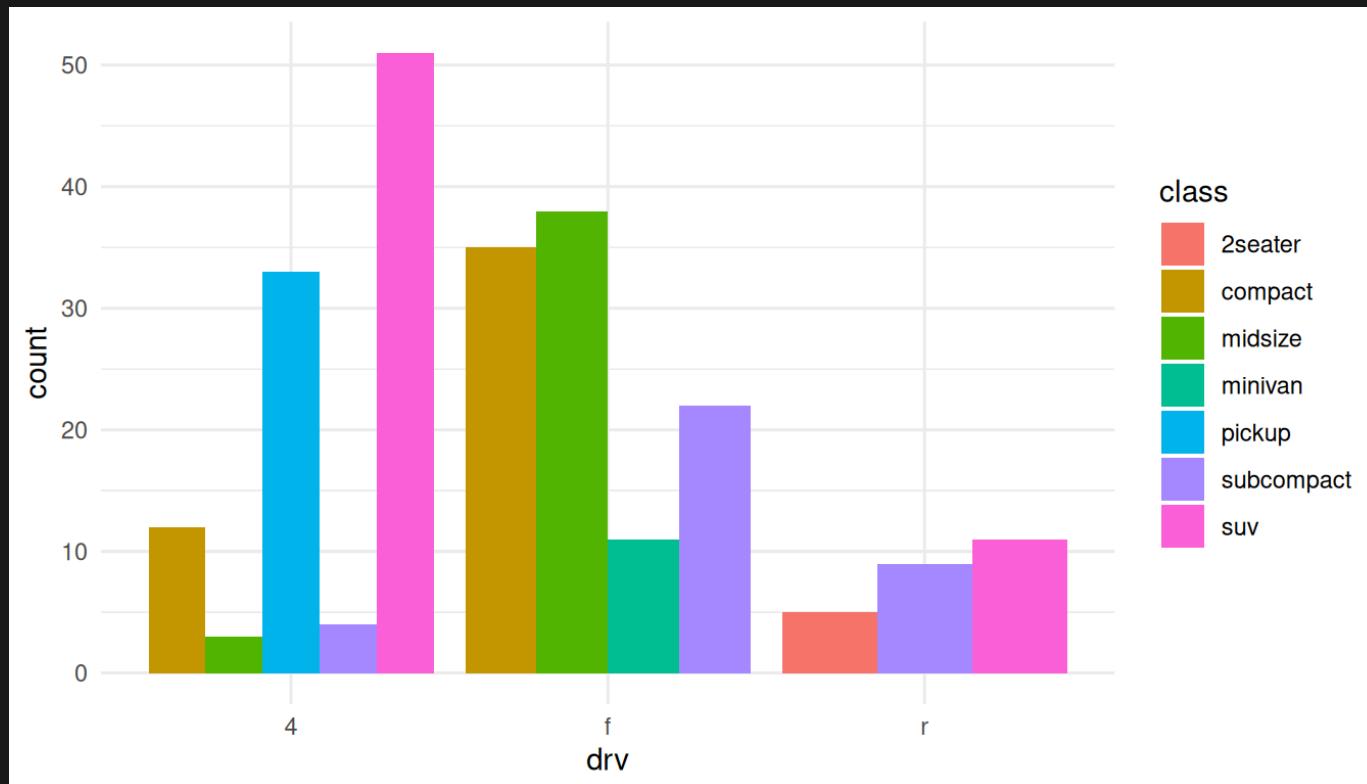
```
1 p <- ggplot(mpg, aes(drv))  
2 p + geom_bar(aes(fill=class))
```



Barplots

- By default stacked. How to unstack?

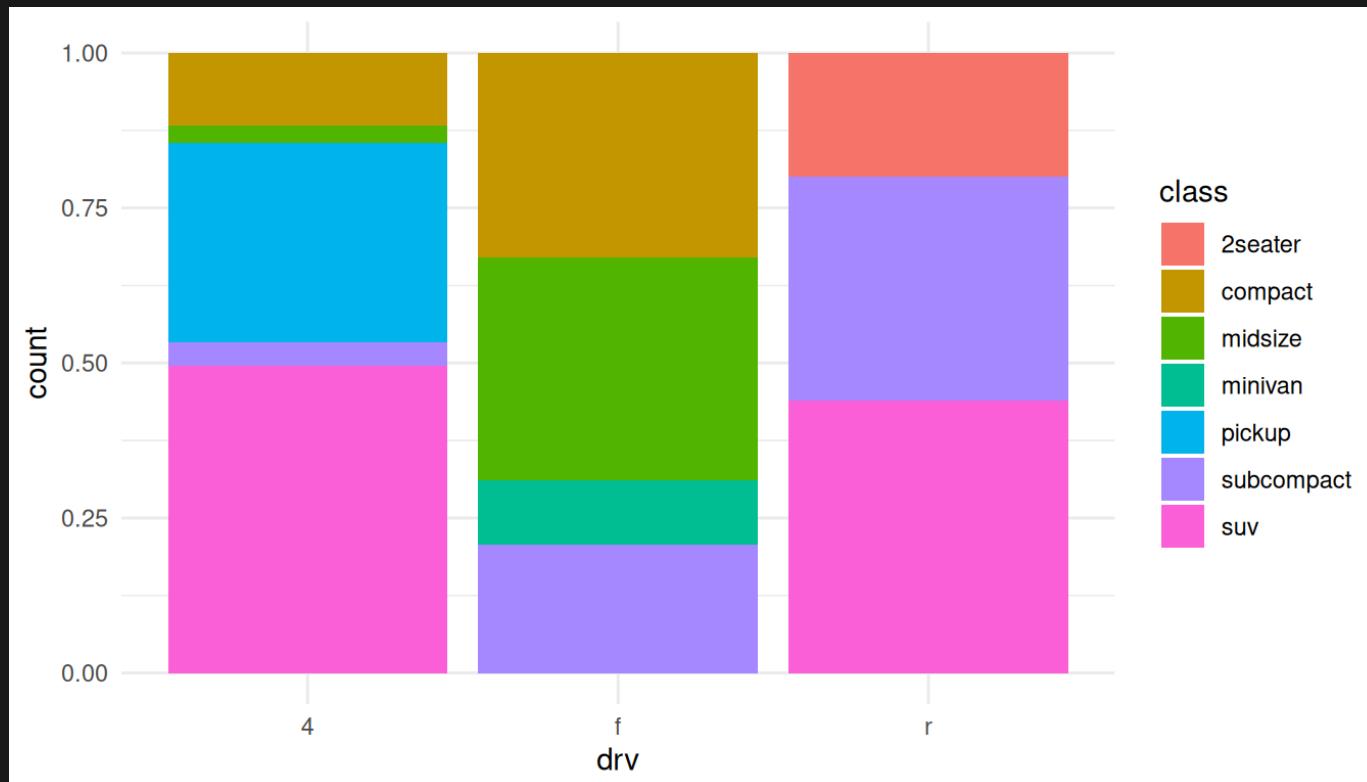
```
1 p <- ggplot(mpg, aes(drv))
2 p + geom_bar(aes(fill=class), position = position_dodge())
```



Barplots

- By default stacked. How to show relative weight?

```
1 p <- ggplot(mpg, aes(drv))
2 p + geom_bar(aes(fill=class), position = position_fill())
```



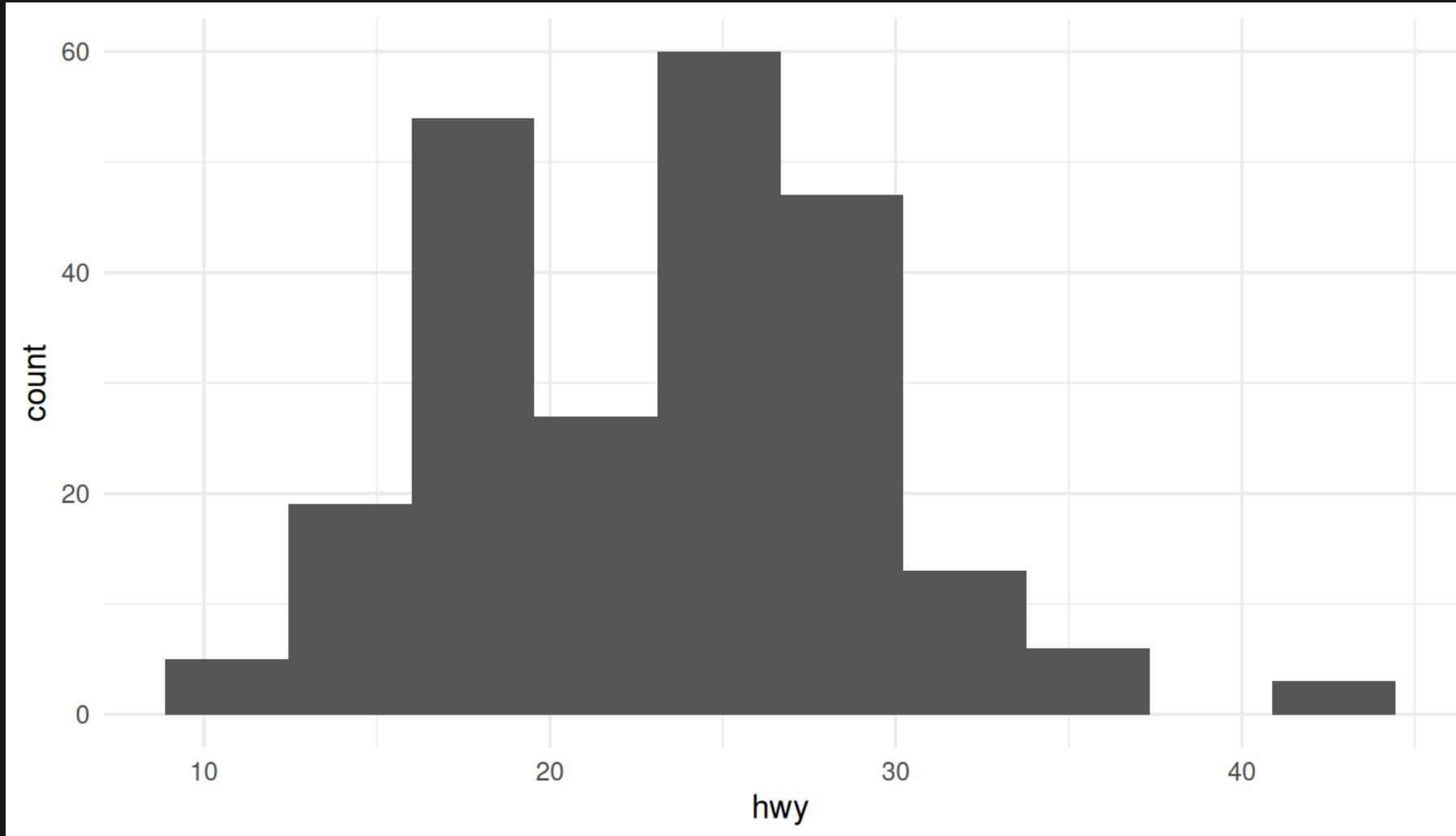
One variable, continuous

- If `var` is continuous, it makes more sense to show distributions

```
1 p <- ggplot(mpg, aes(hwy))  
2 p + geom_histogram()
```

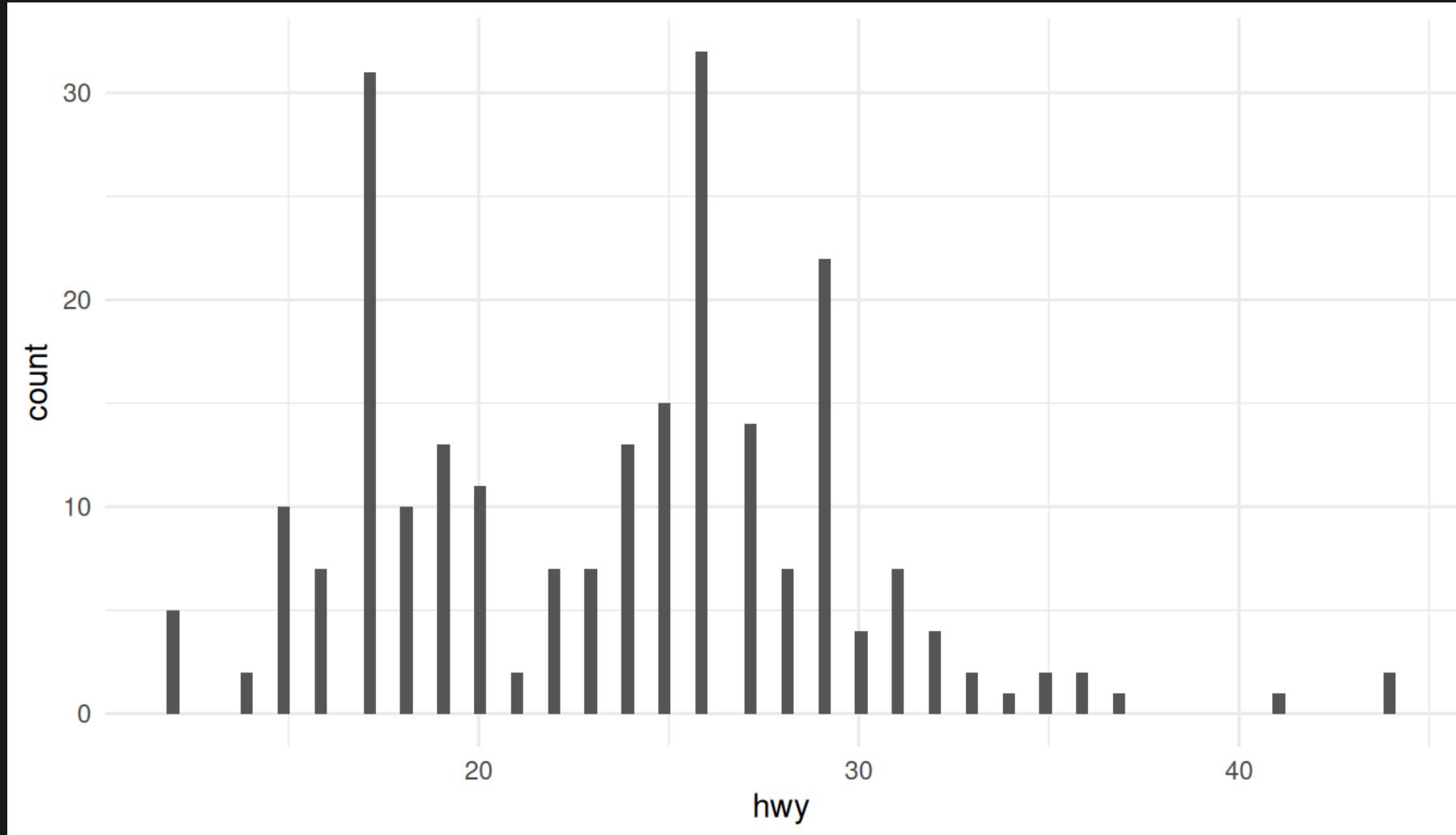
Histograms: binwidth

```
1 p + geom_histogram(bins = 10)
```



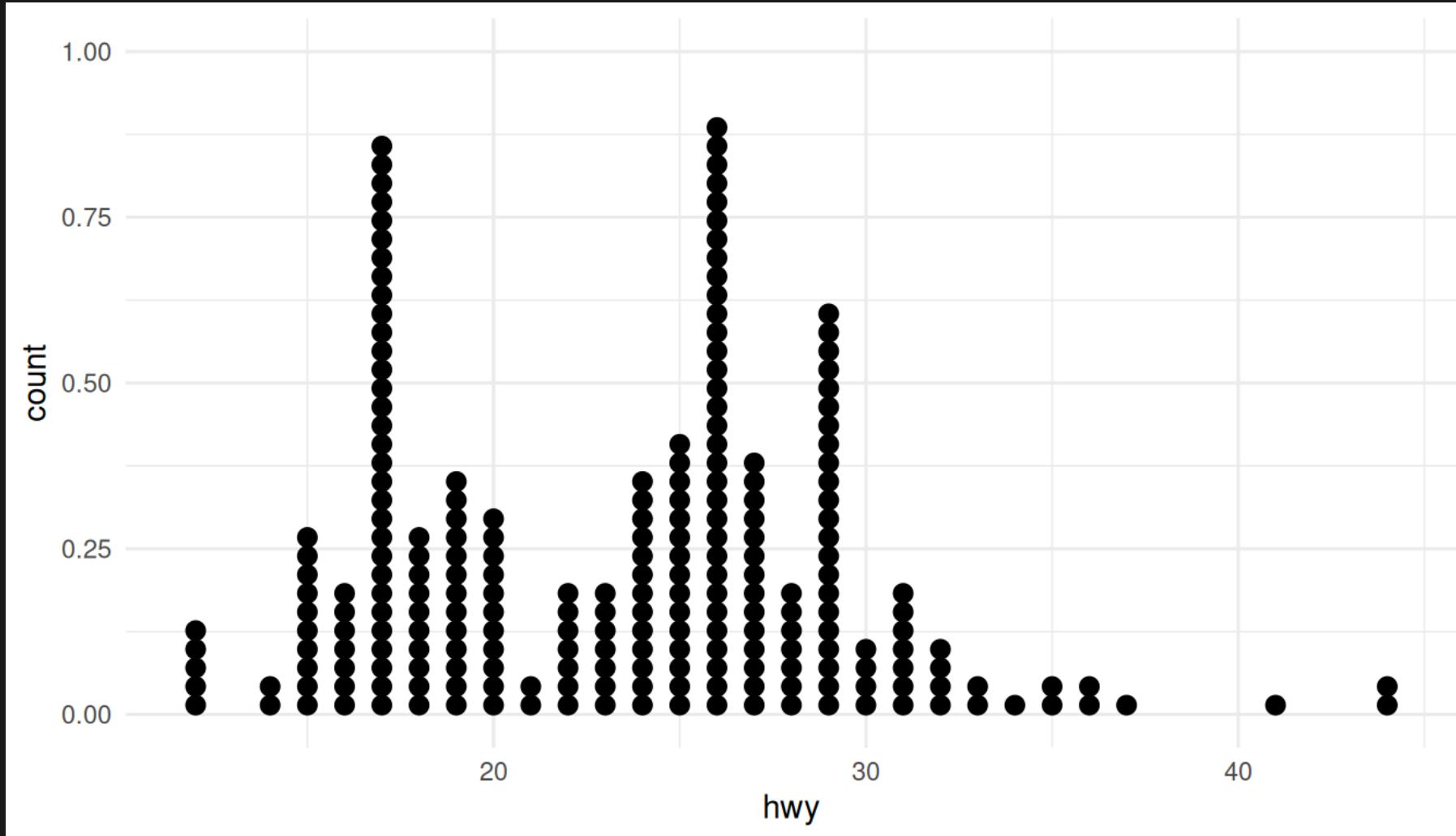
Histograms: binwidth

```
1 p + geom_histogram(bins = 100)
```



An alternative to histogram: `dotplot`

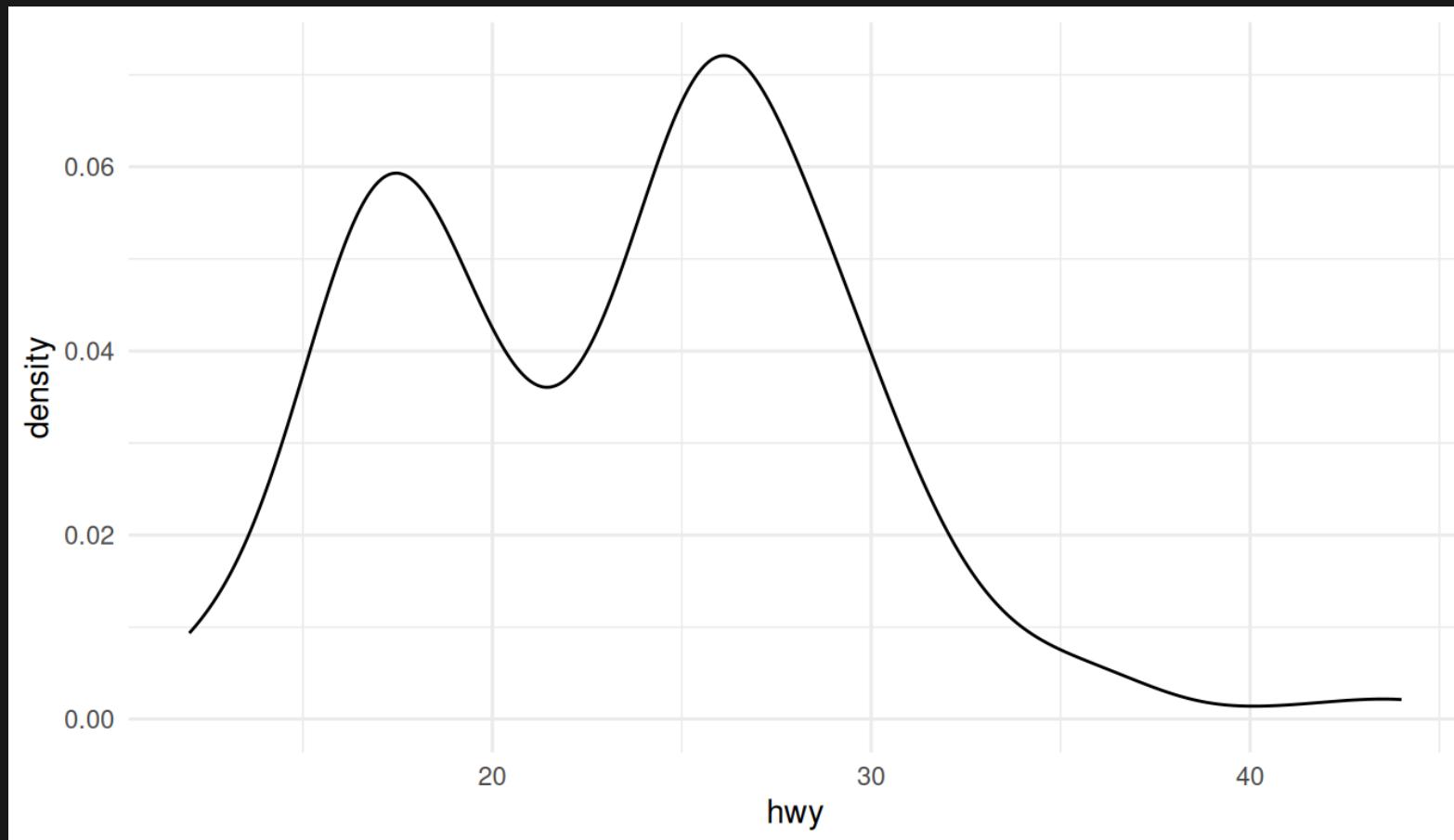
```
1 p + geom_dotplot(binwidth = 0.5)
```



Continuous distributions

In this case use `kernel density estimation`

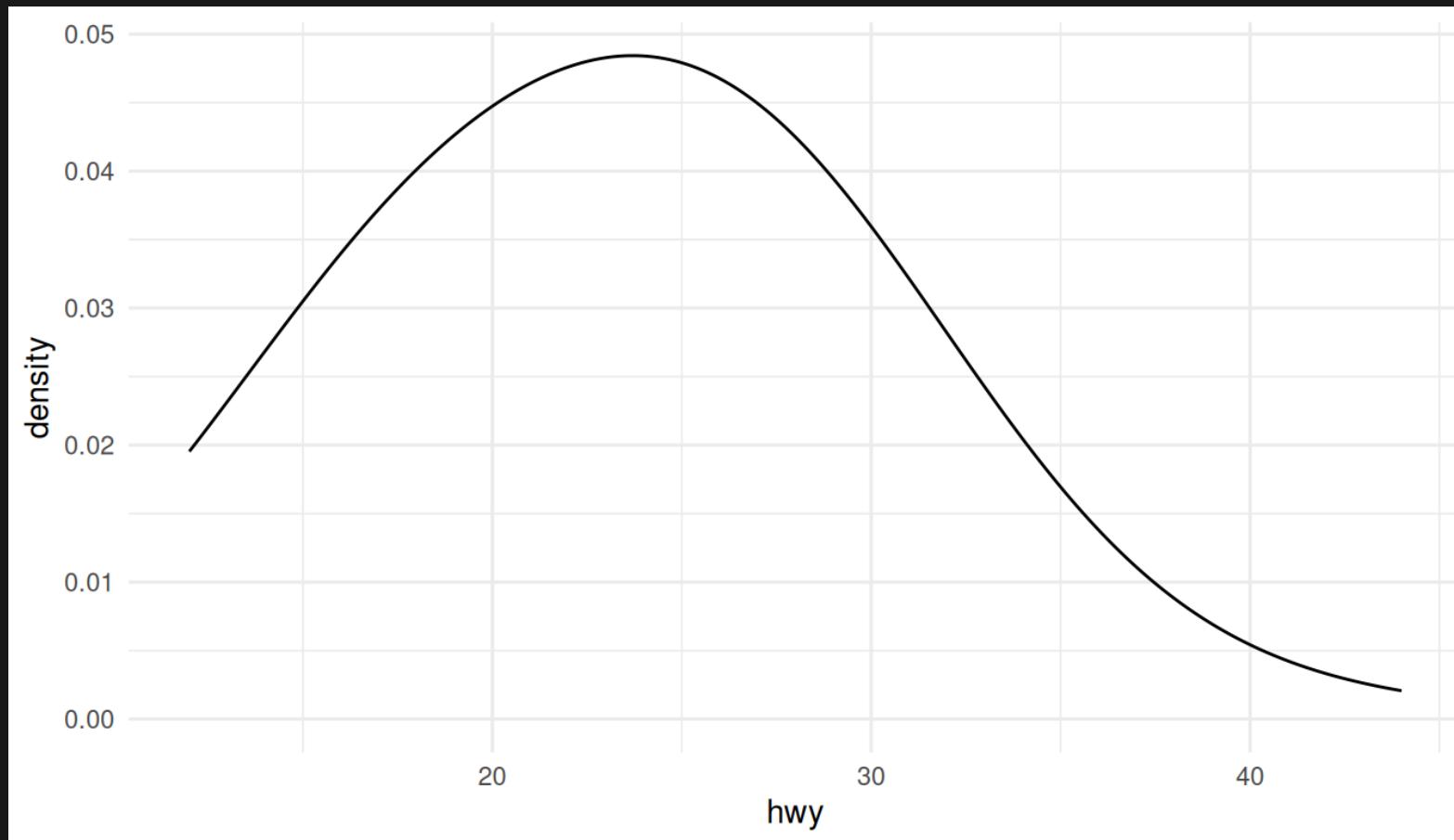
```
1 p + geom_density()
```



Continuous distribution

In this case use `kernel density estimation`

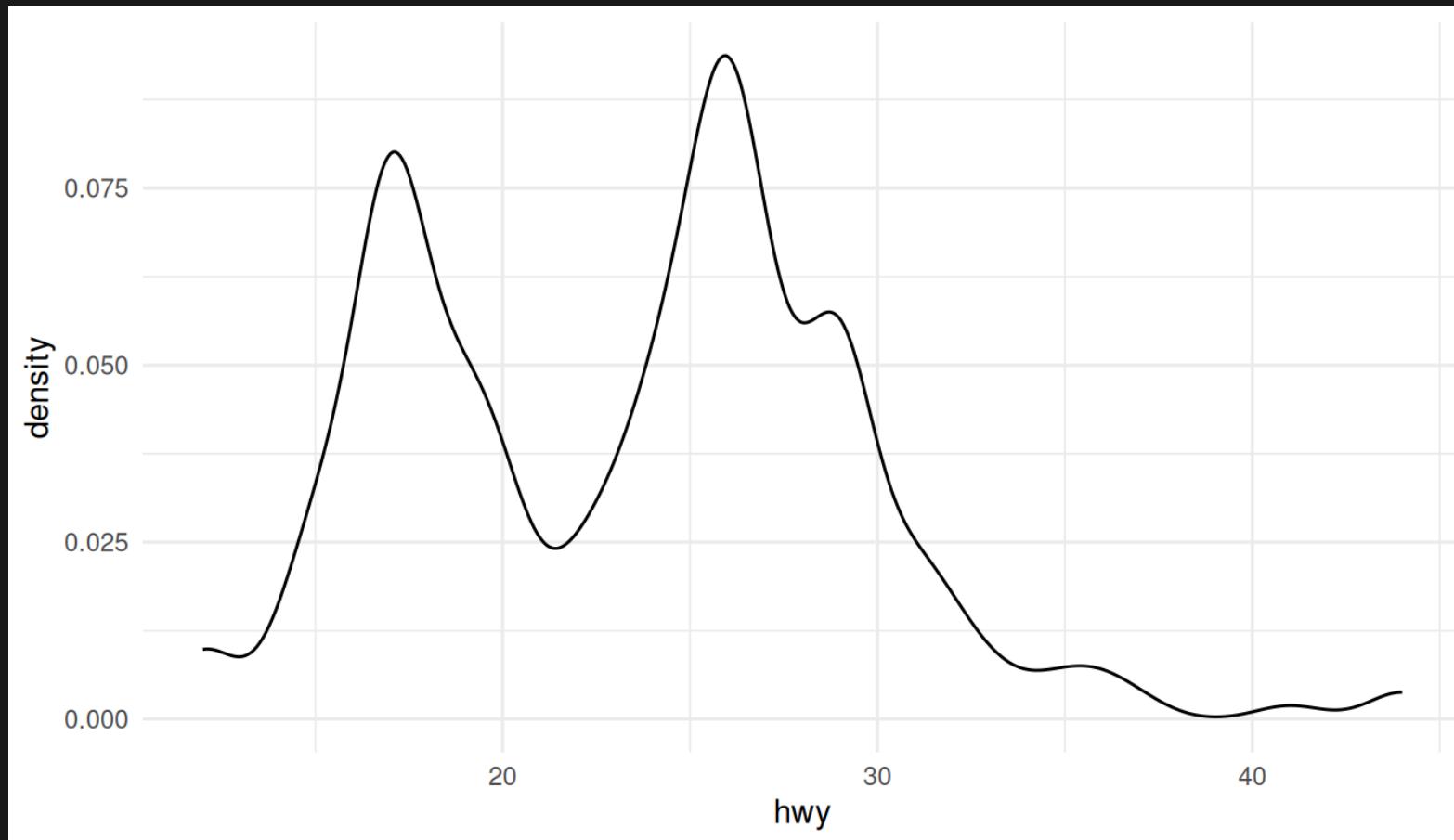
```
1 p + geom_density(adjust = 3)
```



Continuous distribution

In this case use `kernel density estimation`

```
1 p + geom_density(adjust = 0.5)
```



Exploring data: **two** variables

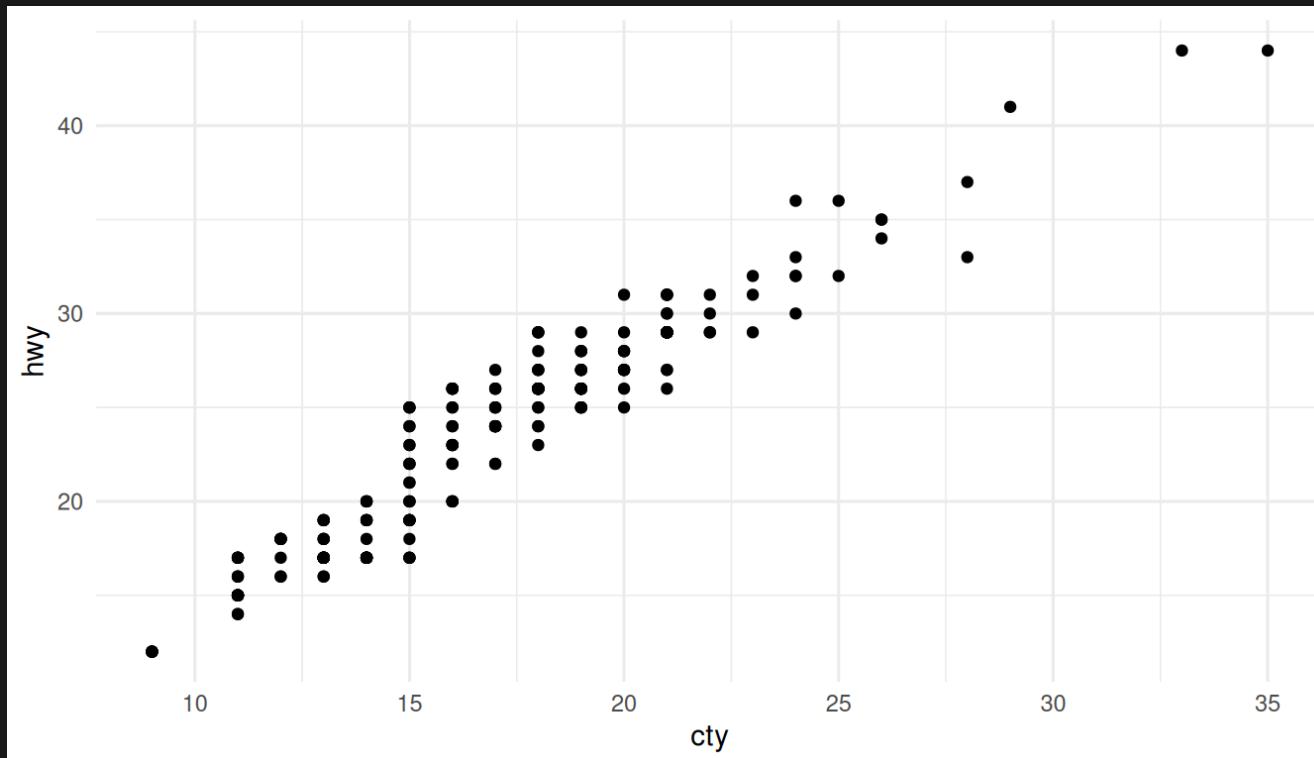
Plot types depend on the variable type

- *both vars continuous*: scatter, smooth
- *one continuous, one discrete*: columns, boxplot, violins
- *both discrete*: count

Scatter

if two variables are continuous, your choice is scatter

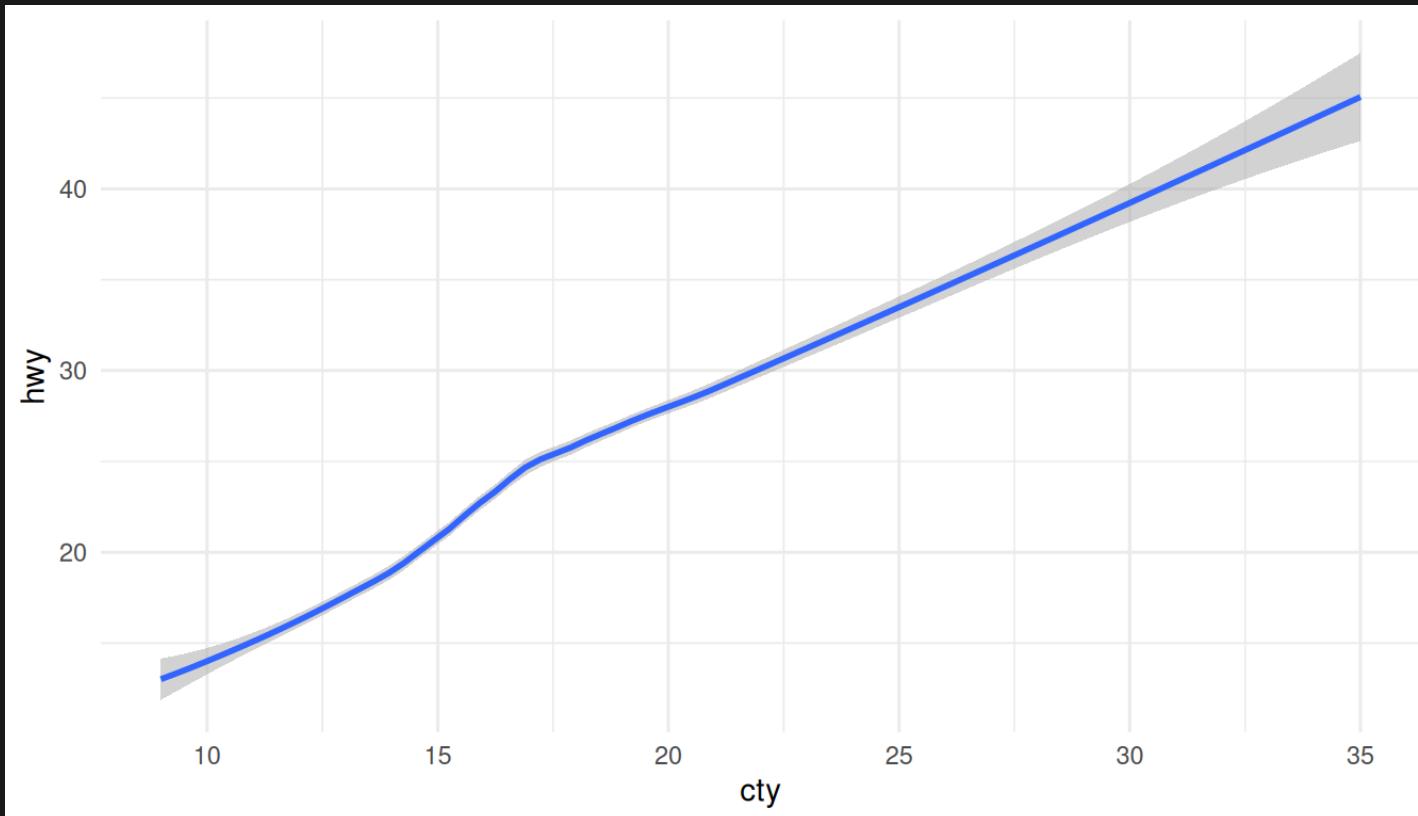
```
1 p <- ggplot(mpg, aes(x = cty, y = hwy))  
2 p + geom_point()
```



Smooth

still, you might just want to show the general tendency

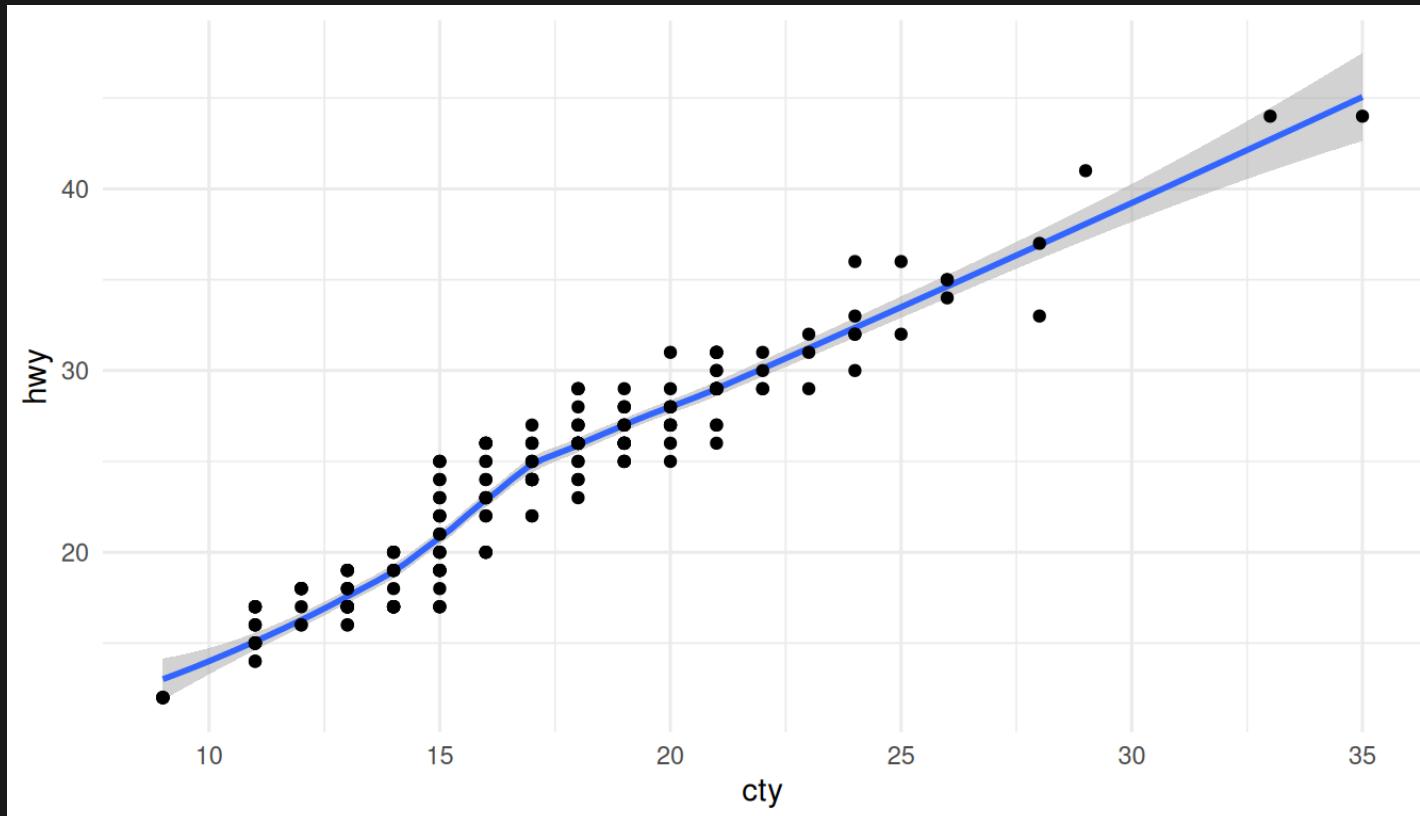
```
1 p + geom_smooth()
```



Scatter + smooth

or both

```
1 p + geom_smooth() + geom_point()
```



Columns: a special type of bars

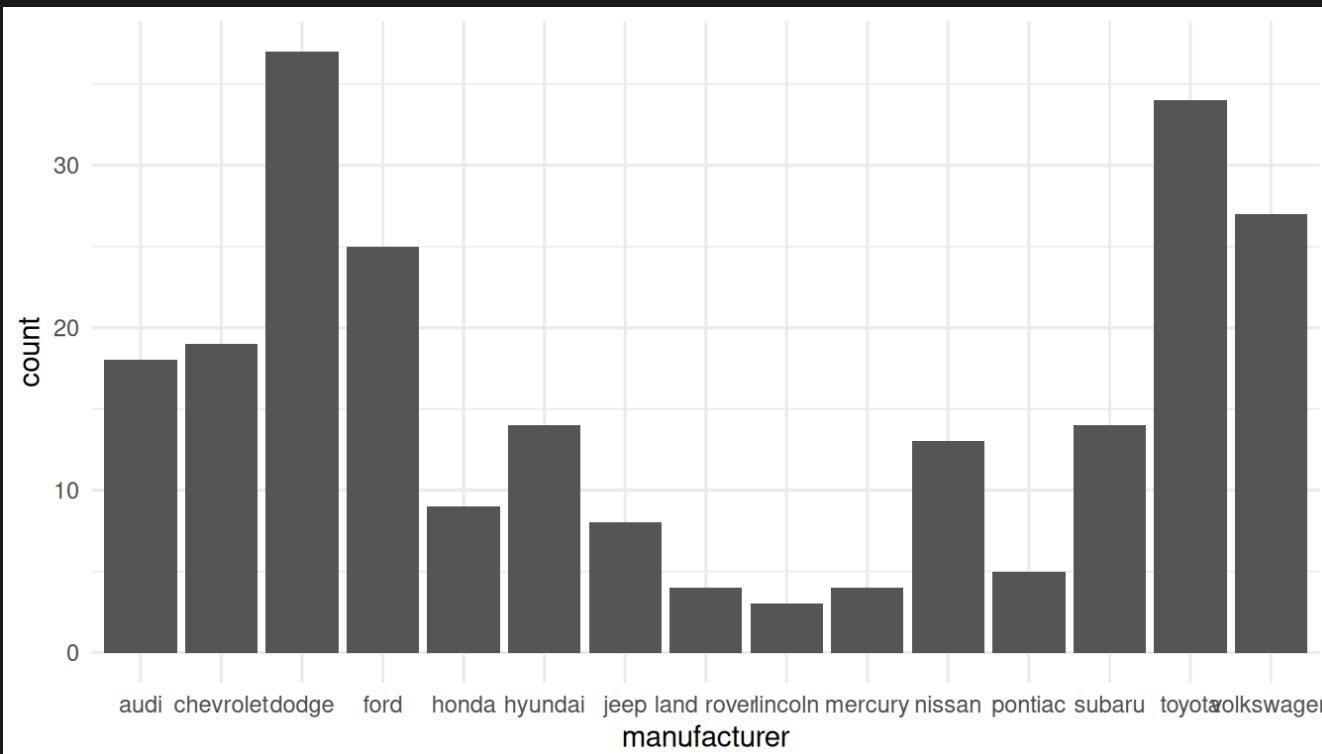
one variable discrete, one continuous (needs
`summarise()!`)

```
1 mpg %>% group_by(manufacturer) %>% summarise(n = n()) %>%  
2 ggplot(aes(manufacturer, n)) +  
3   geom_col()
```

Columns: why bother?

we could have used `geom_bar` (that counts for us)

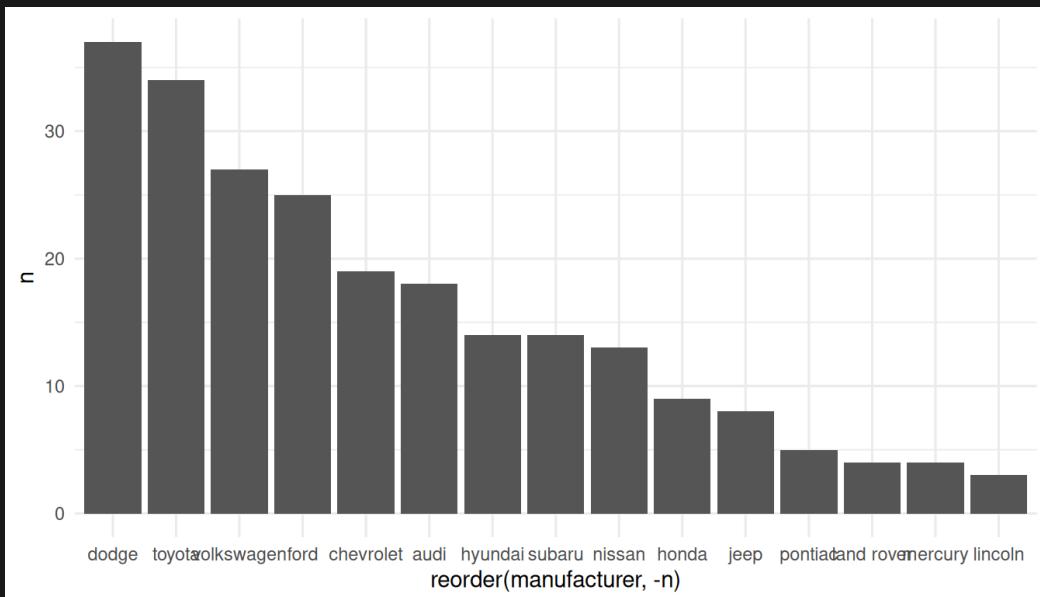
```
1 mpg %>% ggplot(aes(manufacturer))+
2   geom_bar()
```



Columns: a special type of bars

but `geom_col` gives more options, since now you condition on a proper variable (`n`). For instance: order by `n`

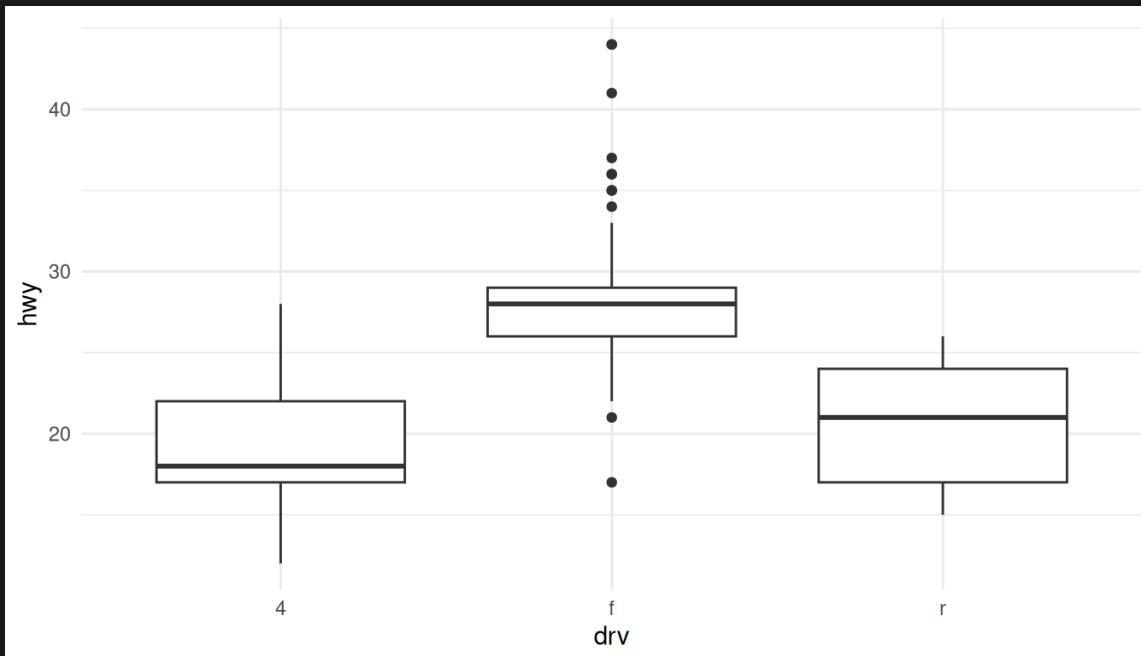
```
1 mpg %>% group_by(manufacturer) %>% summarise(n = n()) %>%  
2 ggplot(aes(reorder(manufacturer, -n), n)) +  
3   geom_col()
```



Boxplots

boxplots show a distribution but can do so over different levels of a categorical var

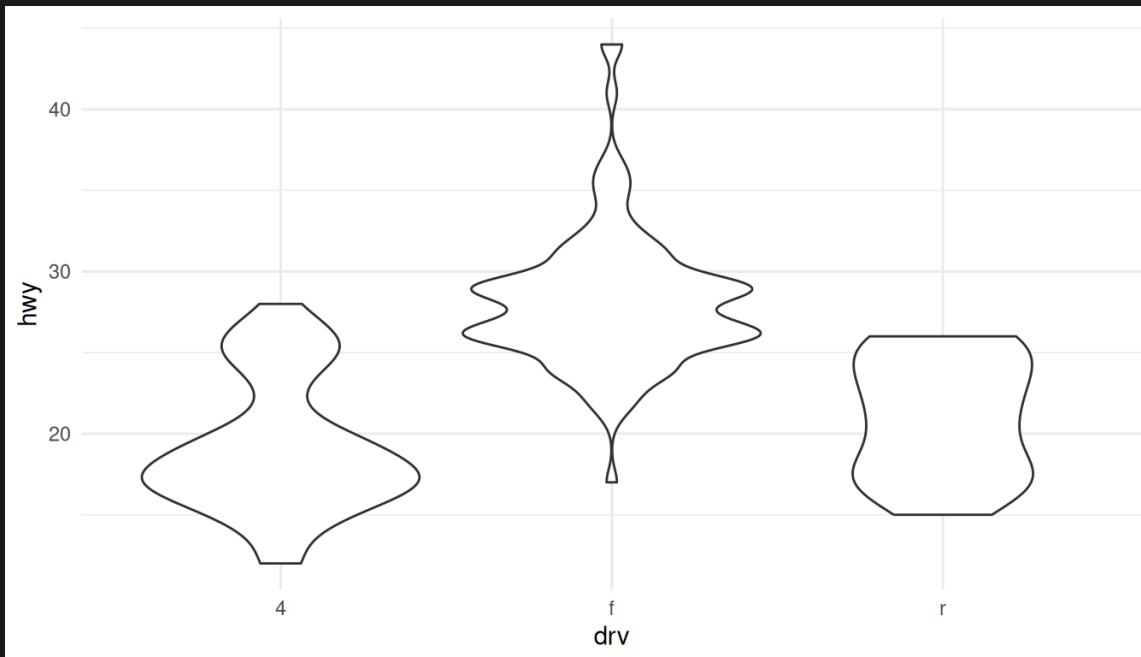
```
1 mpg %>% ggplot(aes(drv, hwy)) +  
2   geom_boxplot()
```



An alternative to boxplot: violin

boxplots are bulky and only show relevant info. Want full distribution? Use violins

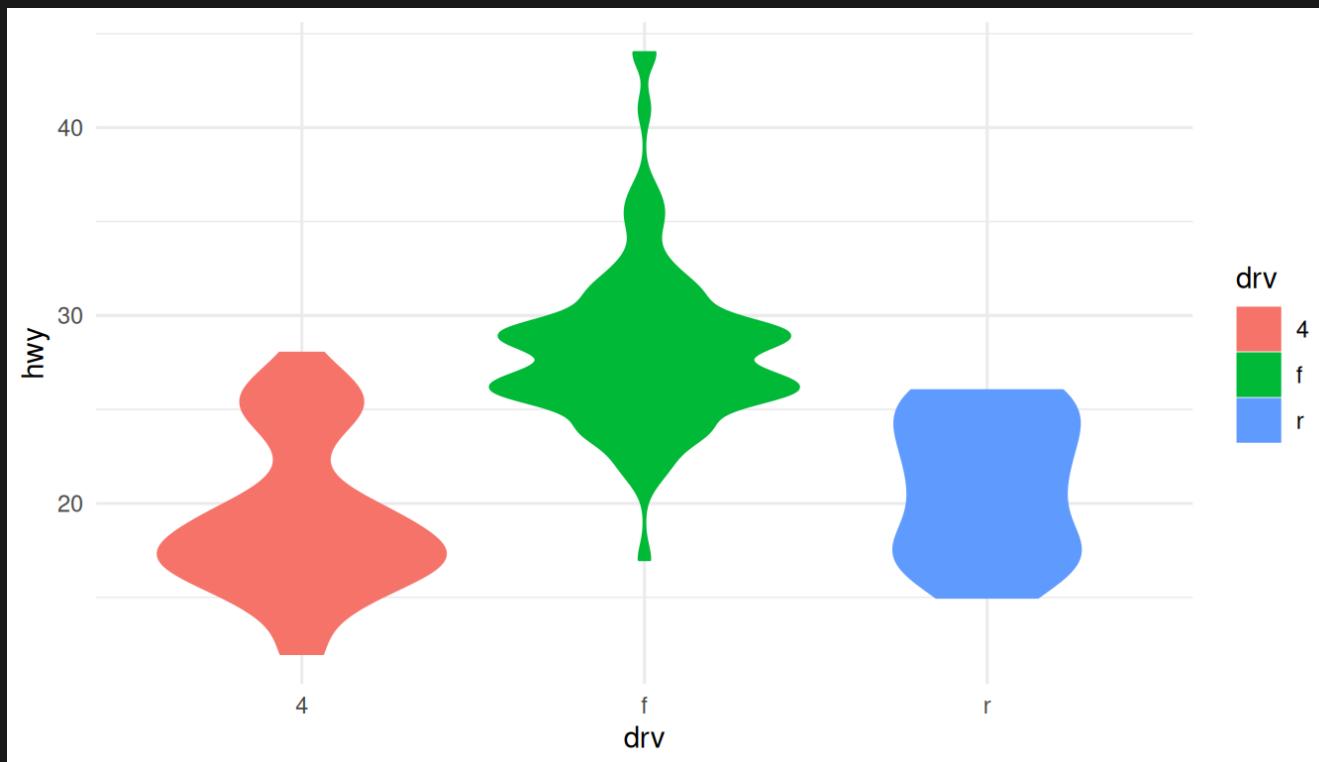
```
1 mpg %>% ggplot(aes(drv, hwy)) +  
2   geom_violin()
```



An alternative to boxplot: violin

remember: all is modular. We can always add color, fill...

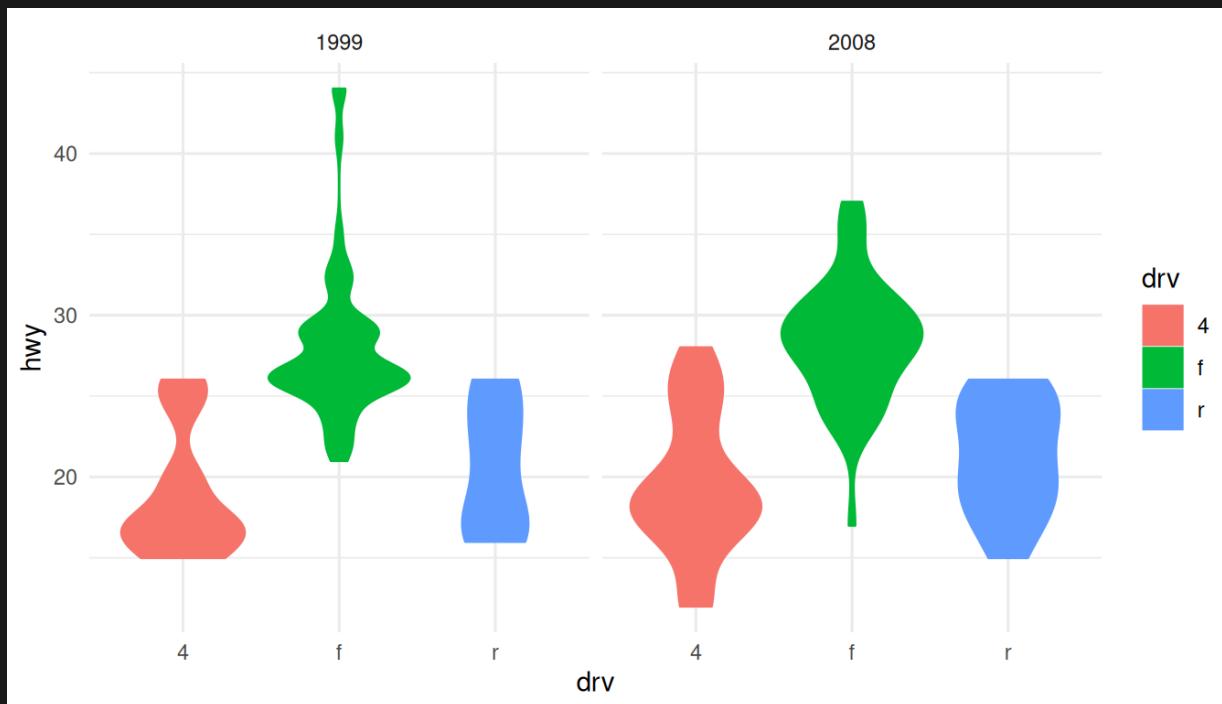
```
1 mpg %>% ggplot(aes(drv, hwy, color = drv, fill = drv))+
2   geom_violin()
```



An alternative to boxplot: violin

remember: all is modular. ...facets

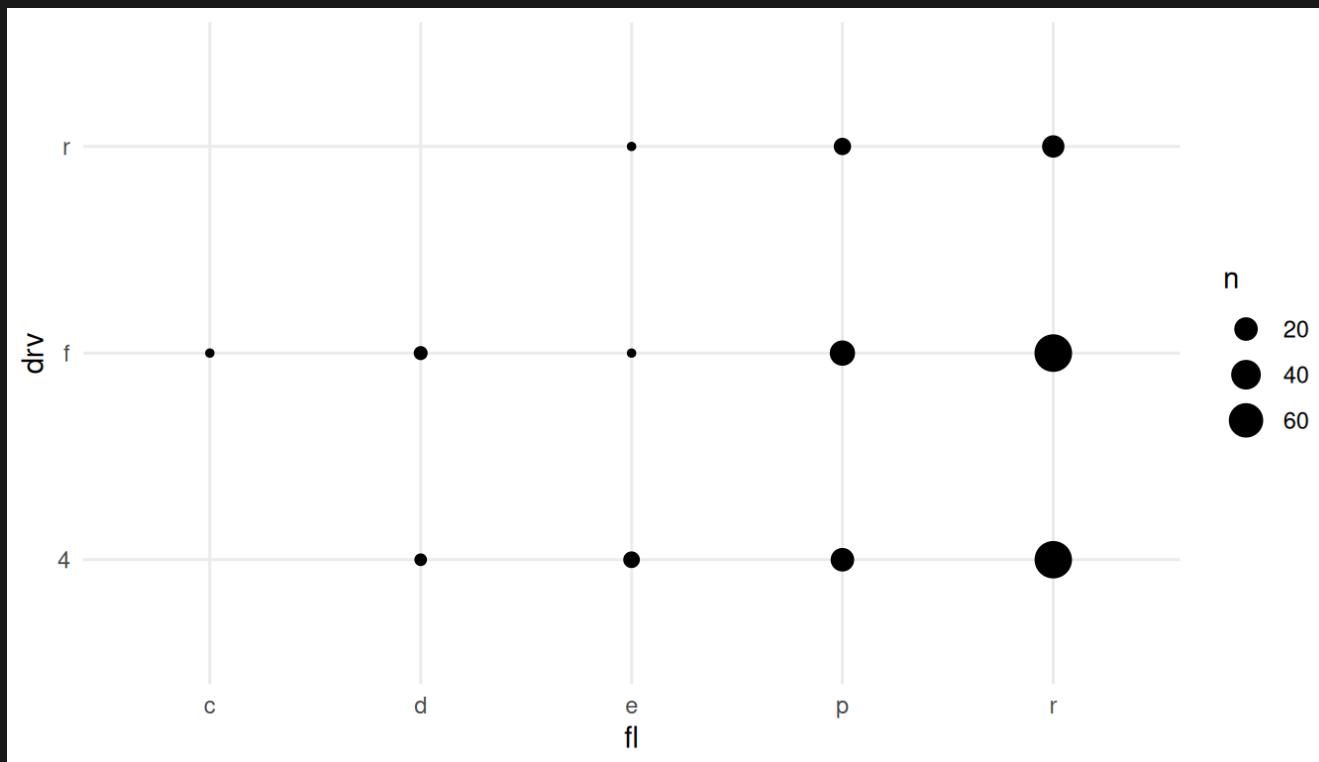
```
1 mpg %>% ggplot(aes(drv, hwy, color = drv, fill = drv))+
2   geom_violin()+
3   facet_grid(.~year)
```



Counts

two categorical variables: count their cross-tabulation

```
1 mpg %>% ggplot(aes(fl, drv))+
2   geom_count()
```



Exploring data: **three** variables

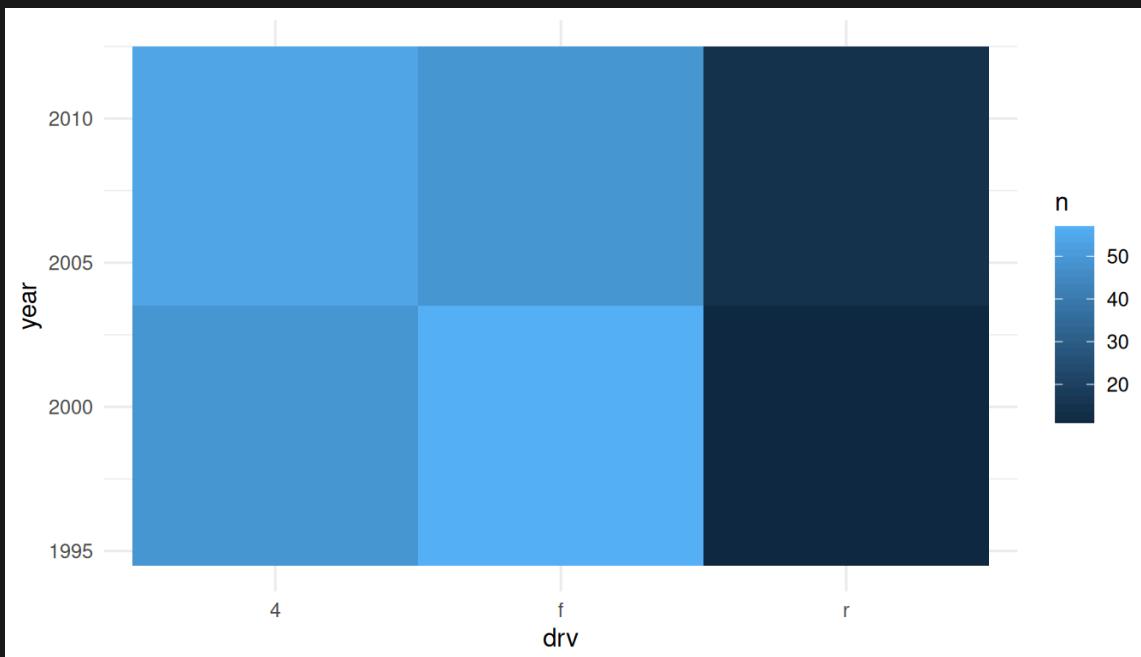
Plot types depend on the variable type

- *all continuous*: contour plot (think: elevation in maps)
- *some discrete*: tile

Tile

two variables for the x,y grid. A third the color of the cell.
(needs `summarise()`!)

```
1 mpg %>% group_by(year, drv) %>% summarise(n = n()) %>%  
2   ggplot(aes(x = drv, y = year, fill = n)) + geom_tile()
```



Additional resources

- the `ggplot` **cheatsheet** is your friend (Help -> cheatsheets)
- **stack overflow** helps out for trickier questions
- **chatGPT** is your friend, too (but beware)
- not feeling inspired?
 - **50 cool visualisations**
 - **a complete list of possibilities in R and python**