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Recap: notation, production set Y , netput vectors

• A production vector, or netput vector, is denoted by y = (y1, . . . , yL) ∈ RL;

• negative entries represent inputs, positive entries output.

• The set of all technologically feasible plans is Y ⊂ RL.

• In the case of a single-output, many input technology, we use a different
notation:

• In this case y has L− 1 nonpositive entries (inputs) and 1 nonnegative entry
(output).

• We denote inputs by a positive vector z = (z1, . . . , zL−1) ∈ RL−1
+ , and output

with the scalar q ≥ 0.

• In this case a production function tells us how much output q is technologically
possible to produce given z inputs:

• all feasible plans will hence have the property q ≤ f (z).
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Recap: properties of Y

No free lunch: no input must imply no output. No creation ex-nihilo.

Inaction allowed: not doing anything is possible [sunk cost]

Free disposal: it is always possible to get rid for free of additional inputs.

Irreversibility: it is not possible to reverse a technology. [thermodinamics]

Additivity: if two production plans are feasible, producing both plans is also
feasible. [entry]

CRS: scaling production up by α increases production by α.

IRS: scaling production up by α increases production by more than α.

DRS: scaling production up by α increases production by less than α.

Convexity: A convex combinations of two vectors ∈ Y is also in Y .
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Single output: profit maximisation

In all of the following, p is price of output q and w = (w1, . . . ,wL−1) is price of
inputs z .

The profit maximisation problem is solved by maximising revenues minus cost:

Π(p,w) = max
z≥0

pf (z)−w · z

• The result of the maximisation problem, z(p,w), is the optimal amount of
inputs required to maximise profit. It is the demand function for inputs.

• The amount produced at z(p,w), y(p,w) = f (z(p,w)), is the firm’s supply
function (correspondence);

• Given z(p,w), the profit function Π(p,w) can be found by plugging z(p,w) in
the maximand;

• Given Π(p,w), Hotelling’s Lemma tells us that y(p,w) = ∇pΠ(p,w).
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Single output: cost minimisation

Since there is no budget constraint, here the two dual problems are more tied
together than in consumer theory.

The cost minimisation problem is solved by calculating the minimal amount of
input needed to reach production level q:

c(w , q) = min
z≥0

w · z s.t. f (z) ≥ q

• The result of the minimisation problem, z(w , q), is the optimal amount of
inputs required to minimise cost, and is called the conditional demand function.

• Conditional because it is the demand given production level q.

• Given z(w , q), the cost function c(w , q) can be found by plugging z(w , q);

• Given c(w , q), Shepard’s Lemma tells us that z(p, q) = ∇pc(w , q).
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1. MWG 5.B.2: homogeneity

Let f (·) be the production function associated with a single-output technology,
and let Y be the production set. Show that Y satisfies constant returns to scale if
and only if f (·) is homogeneous of degree one.
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Definitions, Setup

Definition
Homogeneity of degree one A function f (x) is homogeneous of degree one if
f (αx) = αf (x) . Note that linear functions are homogeneous of degree one.

Definition
Constant returns to scale The production set Y exhibits constant returns to scale
(CRS) if y ∈ Y implies αy ∈ Y for any scalar α ≥ 0. That is, in a single input -
single output technology, if (−z , q) ∈ Y then (−αz , αq) ∈ Y too.

Since it is an ’if and only if’ proof, we need to prove the following two statements
in the case of single output technology:

CRS ⇒ H1 H1 ⇒ CRS
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Graphic intuition
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Solution: graphical support
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Solution I

CRS ⇒ H1, part I.

1. Take z ∈ RL−1
+ , such that (−z , f (z)) ∈ Y . Being a single-output case, z is

defined over L− 1 goods and is a vector of inputs only. Take a α > 0.

2. The definition of CRS implies that if y ∈ Y , then for any α > 0, αy ∈ Y .

3. Then we can say that the point with coordinates (−αz , αf (z)) ∈ Y .

4. From this, we deduce that αf (z) ≤ f (αz): if the point above is in Y , it must
have a vertical coordinate (αf (z)) lower or equal than the maximum amount
that is possible to produce given those inputs (f (αz));

5. Hence, we have αf (z) ≤ f (αz)
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Solution II

CRS ⇒ H1, part II.

1. We can repeat the same argument with a different vector and a different
constant;

2. so let’s take a vector αz ∈ RL−1
+ and a constant

1

α
> 0.

3. we have by definition that (−αz , f (αz)) ∈ Y ;

4. if CRS holds, it must be true that (− 1

α
αz ,

1

α
f (αz)) ∈ Y .

5. but from this we can derive that
1

α
f (αz) ≤ f (

1

α
αz)

6. that can be simplified, multiplying both sides for α, to f (αz) ≤ αf (z).

7. By combining αf (z) ≤ f (αz) and f (αz) ≤ αf (z), we get the result that
f (αz) = αf (z), Q.E.D.
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Solution III

Proof.
H1 ⇒ CRS

1. Now we have to prove the converse of the proposition proved above.

2. We have to prove hence that if f (αz) = αf (z)⇒ Y satisfies CRS .

3. Take a production plan (−z , q) ∈ Y . Since it is feasible, it must be q ≤ f (z).

4. Since q is just a number, it must be that αq ≤ αf (z);

5. But we assumed homogeneity of degree one, which means αf (z) = f (αz):

6. hence αq ≤ f (αz).

7. Now take another point (−αz , f (αz)) ∈ Y . The point is in Y by the definition
of production function.

8. Since (−αz , f (αz)) ∈ Y and αq ≤ f (αz), we get (−αz , αq) ∈ Y , i.e. CRS .
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2. MWG 5.B.3: convexity and concavity

Show that for a single-output technology, Y is convex if and only if the production
function f (z) is concave.
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Graphics

It’s easy to see that intuitively Y is convex if and only if f (z) is concave (or,
subcase, linear).
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Solution: formal proof, I

Y convex ⇒ f (·) concave.

1. Let’s take two input vectors

z ∈ RL−1
+ : (−z , f (z)) ∈ Y , z ′ ∈ RL−1

+ : (−z ′, f (z ′)) ∈ Y

2. By convexity of Y (assumed), the linear combination of the two vectors must
be in Y

(−(αz + (1− α)z ′), αf (z) + (1− α)f (z ′)) ∈ Y

3. Since the above vector is feasible, it must be that

αf (z) + (1− α)f (z ′) ≤ f (αz + (1− α)z ′)

4. ...which is the definition of concavity.
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Solution: formal proof, II

f (·) concave ⇒ Y convex.

1. Let’s take two feasible plans, (−z , q) ∈ Y and (−z ′, q′) ∈ Y , an α > 0.

2. This first implies that q ≤ f (z) and q′ ≤ f (z).

3. Hence it must be that

αq + (1− α)q′ ≤ αf (z) + (1− α)f (z ′)

4. By concavity of f (·) (assumed)

αf (z) + (1− α)f (z ′) ≤ f (αz + (1− α)z ′)

5. And hence αq + (1− α)q′ ≤ f (αz + (1− α)z ′)

6. Knowing this, we can build a point that shows that convexity holds: the point

(−(αz + (1− α)z ′), αq + (1− α)q′) ∈ Y

7. that is a linear combination of the plans (−z , q) and (−z ′, q′).
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3. MWG 5.C.9: profit and supply functions

Derive the profit function Π(p) and the supply function (or correspondence) y(p)
for the following three single-output technologies, whose production functions f (z)
are:

• f (z) =
√
z1 + z2

• f (z) =
√

min{z1, z2}

• f (z) = (z
ρ
1 + z

ρ
2 )

1
ρ , with ρ = 1

17 of 1



f (z) =
√
z1 + z2: boundary optimum, I

• In this case, non-negativity constraint binds. We are facing a boundary
optimum.

• FOCs are not informative. We must hence consider cost minimisation,
retrieving from there the profit function.

• Let’s impose p = 1. we have q =
√
z1 + z2.

• Since the two inputs are perfect substitutes, the firm will use only the one with
the lower price. Hence

if w1 > w2

then z1 = 0 ⇒ z2 = q2 ⇒ c = w2z2 = w2q
2

then Π(p,w) = max
q

q −w2q
2 ⇒ ∂Π

∂q
= 0 ⇒ q =

1

2w2

then Π(p,w) =
1

2w2
−w2

1

4w2
2

=
1

4w2
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f (z) =
√
z1 + z2: boundary optimum, II

if w1 = w2

then z1 + z2 = q2 ⇒ c = w2z2 = w2q
2

then Π(p,w) =
1

4w2
and q =

1

2w2
as before

if w1 < w2

then z2 = 0 ⇒ z1 = q2 ⇒ c = w1q
2

then Π(p,w) =
1

4w1
and q =

1

2w1

Summing up

Π =


1

4w1
if w1 < w2

1

4w2
if w1 ≥ w2
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f (z) =
√
z1 + z2: boundary optimum, III

The supply function y(p,w), assuming p = 1, is given by

y(w) =



{
(0,− 1

4w2
,

1

2w2
)

}
if w1 > w2{

(−z1,−z2,
1

2w2
), z1, z2 ≥ 0, z1 + z2 =

1

4w1,2

}
if w1 = w2{

(− 1

4w1
, 0,

1

2w1
)

}
if w1 < w2
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f (z) =
√

min{z1, z2}: non differentiable, I

• The function is not differentiable. But we recognise Leontieff function:

• at optimum, we will have z1 = z2 = q2. Hence

c = w1q
2 +w2q

2 = q2(w1 +w2)

Π = q − q2(w1 +w2)

∂Π
∂q

= 0 ⇒ q =
1

2(w1 +w2)

z1 = z2 =
1

4(w1 +w2)2
⇒ Π =

1

4(w1 +w2)

y(p) =

(
− 1

4(w1 +w2)2
,− 1

4(w1 +w2)2
,

1

2(w1 +w2)

)
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f (z) = (z
ρ
1 + z

ρ
2 )

1
ρ , when ρ = 1

If ρ = 1, then f (z) = z1 + z2, and non-negativity constraint binds. Assuming
p = 1, if input prices are higher than p it is optimal not to produce; in the
opposite case production is +∞. Solutions are

Π(w) =

{
0 if min{w1,w2} ≥ 1

∞ if min{w1,w2} < 1

y(w) =



{0} if min{w1,w2} ≥ 1

∞ if min{w1,w2} < 1

{α(−1, 0, 1) : α ≥ 0} if 1 = w1 < w2

{α(0,−1, 1) : α ≥ 0} if w1 > w2 = 1

{α(−z1,−z2, 1) : α, z1, z2 ≥ 0, z1 + z2 = 1} if w1 = w2 = 1
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4. Cobb-Douglas production function: all you ever wanted to
know

Consider a Cobb-Douglas production function, f (z) = zα
1 z

β
2 with α, β > 0. For the

three cases in which α + β <,=,> 1:

• draw Y (in 3d), marginal and average product, and the rate of technical
substitution (in 2d);

• solve the profit maximisation and the cost minimisation problems;

• find conditional factor demand functions;

• find supply functions (correspondences);

• find cost functions.
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Returns to scale

• First, let’s consider that Cobb-Douglas is homogeneous of degree α + β:

• let’s take f (z) = zα
1 z

β
2 , and a positive constant k > 0.

• then by applying the definition of homogeneity,

f (kz) = kzα
1 kz

β
2 = kα+βzα

1 z
β
2 = kα+βf (kz)

• hence, if α + β = 1, we have homogeneity of degree one and CRS (see proof);

• if α + β < 1 we have decreasing returns to scale;

• if α + β > 1 we have inreasing returns to scale.

For graphics of the three cases, see the file CD.pdf, (courtesy Peter Fuleky,
U.Washington) on ARIEL. It depicts production sets Y , isoquants, marginal
product, returns to scale.
In the case of single output - single input technology, see the file
GraphsProduction.pdf on ARIEL.
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Returns to scale and problems

• The profit function is not always defined for any production function.
• In the case of CRS, profit is either zero or indeterminate:
◦ Consider f (x) = x . Then Profit is defined as px −wx .
◦ It is clear that if p > w , the marginal profit is positive and constant, leading to

infinite production and profit;
◦ On the other side, if p < w , profit is negative and hence it is optimal not to

produce;
◦ Finally, if p = w , production is indeterminate as all production levels will imply

zero profit.

• In the case of IRS, profit is always infinite:
◦ since returns are increasing, cost is decreasing with output;
◦ since marginal revenue is constant (price-taking), profit (MR −MC) will be always

increasing in q;
◦ it will be then optimal to produce an infinite amount, with infinite profit.

what will we do?

• Analyse CRS on its own;

• Use DRS (profit max well defined) to find Π and z(p,w);

• Use IRS (cost min well defined) to find c(p, q) and conditional demand z(p, q)
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CRS: α + β = 1, I

As in all cases involving CRS, profit maximisation is not well defined. We hence
turn to the cost minimisation problem

c = minw1z1 +w2z2 s.t.: q = zα
1 z

β
2

Which has FOCs

FOC =

{
w1 − λαzα−1

1 z
β
2 = 0

w2 − λβzα
1 z

β−1
2 = 0

which, imposing α + β = 1 can be solved to yield:

z1 = q

(
αw2

βw1

)β

, z1 = q

(
βw1

αw2

)α

Then, imposing q = 1 and plugging, we get unit cost to be:

c =
(w1

α

)α
(
w2

β

)β
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CRS: α + β = 1, II

Hence, as in all cases involving CRS, production is:

y(w) =


0 if c > p

∞ if c < p

∀q if c = p
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DRS: α + β < 1, I

In this case, profit maximisation is well specified with an interior solution, and is

Π = max pzα
1 z

β
2 −w1z1 −w2z2

Which has FOCs

FOC =

{
w1 = αzα−1

1 z
β
2

w2 = βzα
1 z

β−1
2

which can be solved, imposing 1− α− β = γ to yield

z1 =

(
α

w1

) 1−β
γ
(

β

w2

) β
γ

p
1
γ , z2 =

(
α

w1

) α
γ
(

β

w2

) 1−α
γ

p
1
γ
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DRS: α + β < 1, II

The supply function can then be computed by plugging q = f (z(p,w)):

q = zα
1 z

β
2 = p

α + β

γ
(

α

w1

) α

γ
(

β

w2

) β

γ

And the profit function is computed by plugging q(p,w) into Π:

Π = p · q −w · z = γp

1

γ
(

α

w1

) α

γ
(

β

w2

) β

γ
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IRS: α + β > 1, I

In this case profit maximisation is not defined, always giving infinite profits. Cost
minimisation is quite standard instead.

c = minw1z1 +w2z2 s.t.: q = zα
1 z

β
2

Which has FOCs

FOC =

{
w1 − λαzα−1

1 z
β
2 = 0

w2 − λβzα
1 z

β−1
2 = 0

Which can be solved, without imposing any constraint on α + β, to yield:

z1 = q

1

α + β
(

αw2

βw1

) β

α + β , z1 = q

1

α + β
(

βw1

αw2

) α

α + β
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IRS: α + β > 1, II

To get the cost function, ust plug the z(p, q) values in the minimand:

c = w1z1 +w2z2 = (α + β)q

1

α + β
(w1

α

) α

α + β
(
w2

β

) β

α + β

And, of course, the profit function is the same as the one derived in the case in
which α + β < 1 was imposed.
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