Problem Set V: production

Paolo Crosetto
paolo.crosetto@unimi.it

Solved in class on March 1st, 2010

Recap: notation, production set Y, netput vectors
e A production vector, or netput vector, is denoted by y = (y1,...,y1) € RE;
e negative entries represent inputs, positive entries output.
e The set of all technologically feasible plans is Y C RE.
¢ In the case of a single-output, many input technology, we use a different notation:
e In this case y has L — 1 nonpositive entries (inputs) and 1 nonnegative entry (output).
e We denote inputs by a positive vector z = (z1,...,z1-1) € IR_Lfl, and output with the scalar g > 0.

e In this case a production function tells us how much output g is technologically possible to produce
given z inputs:

e all feasible plans will hence have the property g < f(z).

Recap: properties of Y

No free lunch: no input must imply no output. No creation ex-nihilo.

Inaction allowed: not doing anything is possible [sunk cost]

Free disposal: it is always possible to get rid for free of additional inputs.

Irreversibility: it is not possible to reverse a technology. [thermodinamics]

Additivity: if two production plans are feasible, producing both plans is also feasible. [entry]
CRS: scaling production up by & increases production by «.

IRS: scaling production up by & increases production by more than «.

DRS: scaling production up by « increases production by less than «.

Convexity: A convex combinations of two vectors € YisalsoinY.
Single output: profit maximisation

In all of the following, p is price of output g and w = (wy, ..., wy_1) is price of inputs z.

The profit maximisation problem is solved by maximising revenues minus cost:

H(p,w) = max pf(z) —w-z

The result of the maximisation problem, z(p, w), is the optimal amount of inputs required to max-
imise profit. It is the demand function for inputs.

The amount produced at z(p,w), y(p,w) = f(z(p,w)), is the firm’s supply function (correspon-
dence);

Given z(p, w), the profit function I'l(p, w) can be found by plugging z(p, w) in the maximand;

Given I1(p, w), Hotelling’s Lemma tells us that y(p, w) = V,I1(p, w).



Single output: cost minimisation

Since there is no budget constraint, here the two dual problems are more tied together than in consumer
theory.

The cost minimisation problem is solved by calculating the minimal amount of input needed to reach
production level g:
c(w,q) = >in w-z st f(z) >¢q

z>0

e The result of the minimisation problem, z(w, q), is the optimal amount of inputs required to minimise
cost, and is called the conditional demand function.

e Conditional because it is the demand given production level g.
e Given z(w, q), the cost function ¢(w, q) can be found by plugging z(w, q);

e Given c(w, q), Shepard’s Lemma tells us that z(p,q) = V yc(w,q).

1. MWG 5.B.2: homogeneity
Let f(-) be the production function associated with a single-output technology, and let Y be the production

set. Show that Y satisfies constant returns to scale if and only if f(-) is homogeneous of degree one.
Definitions, Setup

Definition 1. Homogeneity of degree one A function f(x) is homogeneous of degree one if f(ax) = af(x)
. Note that linear functions are homogeneous of degree one.

Definition 2. Constant returns to scale The production set Y exhibits constant returns to scale (CRS) ify € Y
implies ay € Y for any scalar « > 0. That is, in a single input - single output technology, if (—z,4) € Y then
(—az,aq) € Y too.

Since it is an ‘if and only if” proof, we need to prove the following two statements in the case of single
output technology:

CRS = H' H'= CRS

Graphic intuition

ay




Solution: graphical support

Y (@2

\

Solution I

CRS = H',part]. 1. Takez € R, such that (—z, f(z)) € Y. Being a single-output case, z is defined

over L — 1 goods and is a vector of inputs only. Take a @ > 0.
The definition of CRS implies that if y € Y, then forany « > 0, ay € Y.
Then we can say that the point with coordinates (—az, af(z)) € Y.

From this, we deduce that af(z) < f(az): if the point above is in Y, it must have a vertical coordinate
(af(z)) lower or equal than the maximum amount that is possible to produce given those inputs

(f(az));

Hence, we have af(z) < f(az)

Solution II

CRS = H',partI. 1. We can repeat the same argument with a different vector and a different constant;

2.

3.

1
so let’s take a vector az € ]REF_1 and a constant " > 0.

we have by definition that (—az, f(az)) € Y;

1 1
if CRS holds, it must be true that (—&zxz, &f(zxz)) ey.

1 1
but from this we can derive that " flaz) < f (;az)

that can be simplified, multiplying both sides for «, to f(az) < af(z).
By combining af(z) < f(az) and f(az) < af(z), we get the result that f(az) = af(z), QE.D.

Solution III

Proof. H' = CRS

1.
2.
3.

Now we have to prove the converse of the proposition proved above.
We have to prove hence that if f(az) = af(z) = Y satisfies CRS.

Take a production plan (—z,q) € Y. Since it is feasible, it must be g < f(z).



Since g is just a number, it must be that ag < af(z);

But we assumed homogeneity of degree one, which means af(z) = f(az):

hence ag < f(az).

Now take another point (—az, f(az)) € Y. The point is in Y by the definition of production function.
Since (—az, f(az)) € Yand ag < f(az), we get (—az,aq) € Y, ie. CRS.
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2. MWG 5.B.3: convexity and concavity

Show that for a single-output technology, Y is convex if and only if the production function f(z) is concave.

Graphics
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f(&)
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It's easy to see that intuitively Y is convex if and only if f(z) is concave (or, subcase, linear).

Solution: formal proof, I
Y convex = f(-) concave. 1. Let’s take two input vectors
zeREY: (=2 fz) ey, ZeRY: (=2 f(Z)eY
2. By convexity of Y (assumed), the linear combination of the two vectors must be in Y
(—(az+ (1—a)Z),af(z) +(1—a)f(Z) €Y
3. Since the above vector is feasible, it must be that
af(z)+ (1 -a)f() < flaz+ (1 - a)Z)

4. ..which is the definition of concavity.

Solution: formal proof, I1
f(+) concave = Y convex. 1. Let’s take two feasible plans, (—z,9) € Y and (—z/,4') € Y,ana > 0.
2. This first implies that g < f(z) and ¢’ < f(z).
3. Hence it must be that
ag+(1-a)g" <af(z) + (1 -a)f(2)
4. By concavity of f(-) (assumed)
af(z) + (1-0)f() < flaz+ (1 -)2)
5. And hence ag + (1 —a)q’ < f(az + (1 —a)z2)
6. Knowing this, we can build a point that shows that convexity holds: the point
(—(az+(1—a)Z),ag+(1—a)g) €Y

7. that is a linear combination of the plans (—z,g) and (-2, ¢’).



3. MWG 5.C.9: profit and supply functions

Derive the profit function Il(p) and the supply function (or correspondence) y(p) for the following three
single-output technologies, whose production functions f(z) are:

o fz) =vz1+z2
e f(z) = Vmin{zy, 25}

e f(z)= (z’l)+z§)%,withp =1

f(z) = \/z1 + z2: boundary optimum, I
e In this case, non-negativity constraint binds. We are facing a boundary optimum.

e FOCs are not informative. We must hence consider cost minimisation, retrieving from there the profit
function.

e Let'simpose p = 1. we have g = /z1 + z2.

e Since the two inputs are perfect substitutes, the firm will use only the one with the lower price. Hence

if wy > wy
thenz; =0 = zzzq2 = c:w222:w2q2

oIl 1
= — 2 _— = = —
then I'l(p, w) = mqax q—wq” = 3 0 =9 2w,
1 1

then TT( w)—ifw — = —
p0) = 2w, 24w§ 4w,
f(z) = \/z1 + z2: boundary optimum, II
if w1 = Wy
then z1 +2, = qz = = wyzp = w2q2

1 1
then I1(p, w) = Tw, and g = 70, as before

if w < wp
thenzy; =0 = z; = ¢*> = ¢ = wg°

then I'l(p, w) = 1 and g

4’(’01 - %
Summing up
1
— if wy < wop
I1={ 4
— if w1 > Wy
47/U2

f(z) = \/z1 + z2: boundary optimum, III
The supply function y(p, w), assuming p = 1, is given by

1 1
[ — 'f
(©, 4w2'2wz>} H W > W
1
- - - rm— > = .f —
y(w) (—z1,—22, 2w2),2’1,22 > 0,21 + 2o 4w1,2} if w =w,
1 1
[ — 'f
{( 4w1'0'2w1>} 1wy < wy



f(z) = /min{z1, z; }: non differentiable, I
e The function is not differentiable. But we recognise Leontieff function:
e at optimum, we will have z; = z; = ¢%. Hence

c= w1q2 + wzqz = qz(w1 + wy)

IT=gq—q*(w; +wy)

o 17 2(w; +wy)
1 1
— = M=
TR Lw wy)? 4(wy +wy)

y(p) = <_4(w1 +wy)?" 4(wy + wy)? 2(wy + w2))

f(z) = (2 +25)°, when p = 1

If p = 1, then f(z) = z1 + 22, and non-negativity constraint binds. Assuming p = 1, if input prices are
higher than p it is optimal not to produce; in the opposite case production is 4-co. Solutions are

M(w) = 0 if min{w;,wr} >1
) if min{wl,w2}<1

{0} lf min{wl,w2} 2 1
o if min{w;, wy} <1
y(w) =  {a(-1,0,1) : « >0} if 1=w; <w

{a(0,-1,1) : « >0} if wy >wp=1
{a(—=z1,—22,1) s w,21,20 > 0,21 +2p =1} if wy=wp =1

4. Cobb-Douglas production function: all you ever wanted to know

Consider a Cobb-Douglas production function, f(z) = zi‘zg with «, 8 > 0. For the three cases in which

a+p<,=>1
e draw Y (in 3d), marginal and average product, and the rate of technical substitution (in 2d);

solve the profit maximisation and the cost minimisation problems;

find conditional factor demand functions;

find supply functions (correspondences);

find cost functions.

Returns to scale

e First, let’s consider that Cobb-Douglas is homogeneous of degree o + f:

let’s take f(z) = z‘i‘zg , and a positive constant k > 0.

then by applying the definition of homogeneity,
fkz) = kz’i‘kzg = k”‘ﬂjz’i‘zlz5 = kP f(kz)

hence, if « 4+ B = 1, we have homogeneity of degree one and CRS (see proof);

if « + B < 1 we have decreasing returns to scale;



e if « + B > 1 we have inreasing returns to scale.

For graphics of the three cases, see the file CD.pdf, (courtesy Peter Fuleky, U.Washington) on ARIEL. It
depicts production sets Y, isoquants, marginal product, returns to scale. In the case of single output -
single input technology, see the file GraphsProduction.pdf on ARIEL.

Returns to scale and problems
e The profit function is not always defined for any production function.
e In the case of CRS, profit is either zero or indeterminate:

- Consider f(x) = x. Then Profit is defined as px — wx.

— Itis clear thatif p > w, the marginal profit is positive and constant, leading to infinite production
and profit;

— On the other side, if p < w, profit is negative and hence it is optimal not to produce;
— Finally, if p = w, production is indeterminate as all production levels will imply zero profit.
e In the case of IRS, profit is always infinite:

— since returns are increasing, cost is decreasing with output;
- since marginal revenue is constant (price-taking), profit (MR — MC) will be always increasing

ing;
— it will be then optimal to produce an infinite amount, with infinite profit.
what will we do?
e Analyse CRS on its own;

e Use DRS (profit max well defined) to find IT and z(p, w);
e Use IRS (cost min well defined) to find ¢(p, q) and conditional demand z(p, )

CRS:a+pf=1,1

As in all cases involving CRS, profit maximisation is not well defined. We hence turn to the cost minimisa-
tion problem

: .o a P
¢ =minwiz] + wWyzp s.t.l g =272,

Which has FOCs 5
o a—1 —
Foc = {1725 63
wy —ABziz, =0

which, imposing & + 8 = 1 can be solved to yield:

B o
oaw w
w=1lfm) (@)

Then, imposing g = 1 and plugging, we get unit cost to be:
p
— (W) (22
€= ( o ) ( B )

CRS:a+ B =1,1I

Hence, as in all cases involving CRS, production is:

0 ifc>p
y(w)=qo0 ifc<p
Vg ifc=p



DRS:a+ B <1,1

In this case, profit maximisation is well specified with an interior solution, and is

IT = max pz’i‘zg — W1Z1 — WZp
Which has FOCs 5
—1
w1 = azy 'z
wy = pziz,
which can be solved, imposing 1 — a« — B = 7 to yield
1-B B o 1—«a
v

a=(a) @) ==(E) (@)

DRS:a + B < 1,11
The supply function can then be computed by plugging g = f(z(p, w)):

a+p 3 B
=ader (2)7(A)

And the profit function is computed by plugging q(p, w) into IT:

1 o B
1= peg—w-z =t (£)7(£)7

w1

IRS:a+ > 1,1

In this case profit maximisation is not defined, always giving infinite profits. Cost minimisation is quite
standard instead.

c=minwizy +wyzp s.t: g = z‘i‘zg

Which has FOCs 6
_ a—1 —
FOC — w1 — Aazg fizl 0
wy —ABziz, =0
Which can be solved, without imposing any constraint on & + f, to yield:

1 B 1 bt
=g (SENTR | (B)7

Bwq awy

IRS: &« + B > 1,11

To get the cost function, ust plug the z(p, q) values in the minimand:

1 « B

¢ =wizy +wrzp = (a+ B)g* TP (%)M (%)“*

=

And, of course, the profit function is the same as the one derived in the case in which « + 8 < 1 was
imposed.



