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Recap: %, �, ∼

Definition
The strict preference relation � is

x � y ⇐⇒ x % y but not y % x

Definition
The indifference relation ∼ is

x ∼ y ⇐⇒ x % y and y % x
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Recap: % rationality assumptions

% is rational if it is

� Complete: ∀x , y ∈ X , we have x % y or y % x or both;

� Transitive: ∀x , y , z ∈ X , if x % y and y % z , then x % z .
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Recap: % and utility function u(·)

Definition
A function u : X 7→ R is a utility function representing % if

∀x , y ∈ X : x % y ⇐⇒ u(x) ≥ u(y)

4 / 26



1. MWG, Exercise 1.B.1 + 1.B.2: properties of %

Prove that if % is rational (complete and transitive), then

1. � is both irreflexive (x � x never holds) and transitive (if x � y and y � z ,
then x � z);

2. ∼ is reflexive (x ∼ x , ∀x), transitive (if x ∼ y and y ∼ z , then x ∼ z) and
symmetric (if x ∼ y then y ∼ x);

3. if x � y % z then x � z .
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Solution: property 3 first

Proof.
Property 3: if x � y % z then x � z

1. By definition, x � y means that x % y but not y % x ;

2. then, x � y % z means x % y % z ;

3. for transitivity (assumed), this means that x % z .

4. Now, let’s suppose that z % x . Since y % z , by transitivity we’d have y % x

5. but this is a contradiction, since we had in the beginning that x � y .

6. So, we have x % z but we cannot have z % x : this means that x � z
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Solution: property 1

Proof.
Property 1: � is irreflexive and transitive

1. Irreflexivity. Use completeness: x % y , ∀x , y ∈ X :

2. hence, it must hold also for x % x , ∀x ∈ X ;

3. this means that in no case there can be x � x .

4. Transitivity. Suppose x � y and y � z :

5. this means that at least x � y % z .

6. But we have proved before that this means x � z .
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Solution: property 2

Proof.
Property 2: ∼ is reflexive, transitive and symmetric

1. Reflexivity. By completeness, x % x , ∀x ∈ X :

2. this implies also that x ∼ x , ∀x ∈ X , by definition of ∼.

3. Transitivity. Suppose x ∼ y and y ∼ z :

4. by the definition of ∼, this means that all of these hold:

5. x % y , y % x , y % z , z % y .

6. By transitivity of %, this implies both x % z and z % x : hence x ∼ z .

7. Symmetry. Suppose x ∼ y : by definition, then x % y and y % x .

8. But the latter is also the definition of y ∼ x , if you look it the other way
around.

9. hence, x ∼ y implies y ∼ x .
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2. MWG 1.B.3 + 1.B.4.: % and u(·)

� Show that if f : R 7→ R is a strictly increasing function and u : X 7→ R is a
utility function representing the preference relation %, then the function
v : X 7→ R defined by v(x) = f (u(x)) is also a utility function representing %;

� Consider a preference relation % and a function u : X 7→ R. Show that if
u(x) = u(y) implies x ∼ y and if u(x) > u(y) implies x � y then u(·) is a
utility function representing %.
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Solution: strictly increasing function, intuition

� We will prove that a utility function associated with % is ordinal and not
cardinal in nature.

� This is important: among other things, it implies that it is impossible to make
interpersonal utility comparisons directly.

� Note the definition of strictly increasing function:

Definition
A function f (x) is said to be strictly increasing over an interval I if f (b) > f (a)
for all b > a, when a, b ∈ I .

Example

Functions that are strictly increasing over their whole domain are among others all
positive straight lines (y = ax , a > 0) and positive exponentials (y = ax , a > 0);
other functions can be increasing over a part of their domain, as parabola (y = x2,
for x > 0).

� Tip: a strictly increasing function on interval I has its derivative positive on I .

10 / 26



Solution: strictly increasing functions, plots
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Solution: strictly increasing function, proof

Proof.
A strictly increasing transformation of a utility function is still a utility function

1. Let’s take x , y ∈ X . Since u(·) represents %, by definition:

2. if x % y then u(x) ≥ u(y).

3. since f (·) is strictly increasing, applying f (·) to u(·) does not change order,
but only magnitude;

4. hence, f (u(x)) ≥ f (u(y)), i.e. v(x) ≥ v(y) when x % y :

5. hence, v(·) is a utility function representing %.
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Solution: u(·), � and ∼.

Proof.
if x % y, then u(x) ≥ u(y)

1. Suppose x % y .

2. if at this we add y % x , then x ∼ y and u(x) = u(y).

3. if instead we don’t have y % x , then x � y and u(x) > u(y).

4. hence, if x % y , then u(x) ≥ u(y)

Proof.
if u(x) ≥ u(y), then x % y

1. Suppose u(x) ≥ u(y).

2. if at this we add u(x) = u(y), then x ∼ y .

3. if instead we add u(x) > u(y), then x � y .

4. hence, if u(x) ≥ u(y), then x % y .
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3. MWG 1.B.5: % and u(·), II

Show that if X is finite and % is a rational preference relation on X , then there is
a utility function u : X 7→ R that represents %.
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Solution: intuition

� Since X is finite, the set of pairwise combination of elements of X is finite too;
� Since % is rational (hence complete and transitive):

� it defines a preference over all of the finite set of pairs;
� it excludes contradictory cycles of preferences.

� Hence, intuitively it is possible to rank all x , y ∈ X according to %;

� it must then be possible to build a utility function with such a complete
ranking using ≥.
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Solution: proving by induction

� A proof by induction is done by showing that something is true for n = 1 and
then for n + 1;

� it then follows that it must be true for all n up to N.

� Proof by induction is used in the set of natural numbers N.

� More formally, for any proposition P(n) about positive integers:

� Prove that P(1) is true (base case);

� Prove that for each k ≥ 1, if P(k) is true, then P(k + 1) is true (inductive
step).

Example

Consider a set of domino tiles. If domino tile n falls, tile n + 1 will fall. If we prove
that tile 1 has fallen, then we can conclude that all tiles will fall.
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Solution: proof, x � y

Proof.
if X is finite, then there exists a u(·) representing %: no indifference

1. Start considering that no two items are indifferent, i.e. x � y , ∀x , y ∈ X ;

2. Let’s prove by induction that in such a setting there exists a u(·) representing
%.

3. Base case: if N = 1 there is nothing to prove.

4. Inductive step: Let’s suppose the claim is true for N − 1, and let’s prove it is
still ture for N.

1. Let’s take X = {x1, x2, . . . , xN−1, xN}.
2. By hypothesis, there exists a u(·) on % defined up to xN−1.

3. Let’s order the x : let’s assume u(x1) > u(x2) > · · · > u(xN−1).

4. Since we have assumed no indifference, the above ranking means exclusively:
∀i < N, xN � xi

∀i < N, xi � xN

∃i < N and j < N s.t. xi � xN � xj17 / 26



Solution: proof, x � y continued

Proof.
...continued
In all the three cases above we can find a value of u(·) that is consistent:

1. In Case 1, we can take u(N) > u(x1);

2. In Case 2, we can take u(N) < u(xN − 1);

3. in Case 3:
� Define two intervals I = {i ∈ (1 . . .N) : xi � xN} and J = {j ∈ (1 . . .N) : xN � xj};
� I and J are disjoint intervals on N by our hypotheses;
� then if i∗ = max I , i∗ + 1 = min J.
� We can then take u(xN ) to lie in the interval (u(i∗), u(i∗ + 1)).

Hence, in all of three cases an utility function can be built.
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Recap: W.A.R.P., %∗

Definition (WARP)

A choice structure (B, C (·)) satisfies the weak axiom if for some B ∈ B with
x , y ∈ B we have x ∈ C (B), then for any B ′ ∈ B with x , y ∈ B ′, if we have
y ∈ C (B ′) we must also have x ∈ C (B ′)

� Which is indeed a minimal consistency requirement. Note that completeness
and transitivity are not required.

Definition (Revealed preference relation %∗)
Given a choice structure (B, C (·)), the revealed preference relation %∗ is defined
as:
x %∗ y ⇐⇒ there is some B ∈ B such that x , y ∈ B and x ∈ C (B).

� Which is just ’attaching a preference relationship’ to choices

� Note again that nor completeness nor transitivity are implied. It is just
descriptive.
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Recap: Rationalizability

Rational preferences % ⇒ W.A.R.P. satisfied X always

W.A.R.P. satisfied ⇒ Rational preferences % × not always

Definition (Rationalizability)

Given a choice structure (B, C (·)), the rational preference relation % rationalizes
C (·) relative to B if C (B) = C ∗(B,%) for all B ∈ B. In other words, % generates
the choice structure (B, C (·)).

� the W.A.R.P. is a necessary but not sufficient condition for rationalizability.

� if B includes all subsets of X of up to three elements, then it is also sufficient:

� intuitively, the three-members property implies transitivity...
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4. Exercise on W.A.R.P.

Consider a choice problem with choice set X = {x , y , z}. Consider the following
choice structures:

� (B′, C (·)), in which B′ = {{x , y}, {y , z}, {x , z}, {x}, {y}, {z}} and
C ({x , y}) = {x}, C ({y , z}) = {y}, C ({x , z}) = {z}, C ({x}) =
{x}, C ({y}) = {y}, C ({z}) = {z}.

� (B′′, C (·)), in which B′′ = {{x , y , z}, {x , y}, {y , z}, {x , z}, {x}, {y}, {z}} and
C ({x , y , z}) = {x},
C ({x , y}) = {x}, C ({y , z}) = {z}, C ({x , z}) = {z}, C ({x}) =
{x}, C ({y}) = {y}, C ({z}) = {z}.

� (B′′′, C (·)), in which B′′′ = {{x , y , z}, {x , y}, {y , z}, {x , z}, {x}, {y}, {z}}
and C ({x , y , z}) = {x},
C ({x , y}) = {x}, C ({y , z}) = {y}, C ({x , z}) = {x}, C ({x}) =
{x}, C ({y}) = {y}, C ({z}) = {z}.

For every choice structure say if the WARP is satisfied and if it exists a rational
preference relation % that rationalizes C (·) relative to its B. If such a
rationalization is possible, write it down. Comment on your results.
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Solution: (B′,C (·))

The choice structure can be summarised in these three relations:

� C ({x , y}) = {x} reveals x %∗ y ;

� C ({y , z}) = {y} reveals y %∗ z

� C ({x , z}) = {z} reveals z %∗ x

1. W.A.R.P. is trivially satisfied
� the same couple never appears more than once in different budgets;
� moreover, B′ does not include all budgets up to three elements.
� %∗ revealed preference relation is not necessarily transitive

2. B′ is NOT rationalizable:
� C ({x , y}) = {x} is rationalised by x � y ;
� C ({y , z}) = {y} is rationalised by y � z;
� C ({x , z}) = {z} is rationalised by z � x .
� It is not transitive, hence (B′,C (·)) is not rationalisable.
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Solution: (B′′,C (·))

The choice structure can be summarised in these relations:

� C ({x , y , z}) = {x} reveals x %∗ y and x %∗ z

� C ({x , y}) = {x} reveals x %∗ y ;

� C ({y , z}) = {y} reveals y %∗ z ;

� C ({x , z}) = {z} reveals z %∗ x .

1. W.A.R.P. is NOT satisfied
� x %∗ z and z %∗ x hold at the same time;
� in this case it exists x , z ∈ B : C (B) = {x}, but there is also...
� ...a x , z ∈ B ′ : z ∈ C (B ′) but not x ∈ C (B ′)

2. B′′ is NOT rationalisable:
� since in general if % is rational ⇒ %∗ satisfies W.A.R.P.;
� then, by using the contrapositive, if A⇒ B, it must be true that ¬B ⇒ ¬A
� Hence (B′′,C (·)) is not rationalisable
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Solution: (B′′′,C (·))

The choice structure can be summarised in these relations:

� C ({x , y , z}) = {x} reveals x %∗ y and x %∗ z

� C ({x , y}) = {x} reveals x %∗ y ;

� C ({y , z}) = {y} reveals y %∗ z ;

� C ({x , z}) = {x} reveals x %∗ z .

1. W.A.R.P. is satisfied
� there are no violations of the type x %∗ y and y %∗ x ;
� moreover, B′′′ includes all budgets up to three elements.

2. B′′′ is rationalizable:
� C ({x , y , z}) = {x} reveals x � y and x � z
� C ({x , y}) = {x} reveals x � y ;
� C ({y , z}) = {y} reveals y � z;
� C ({x , z}) = {x} reveals x � z.
� Hence x � y � z is complete and transitive and rationalises (B′′′,C (·))
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5. MWG 1.D.2: % and W.A.R.P.

Show that if X is finite, then any rational preference relation generates a nonempty
choice rule; that is, C (B) 6= ∅ for any B ⊂ X with B 6= ∅.
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Solution

Proof.
X finite ⇒ C (B) 6= ∅
1. We proved earlier that if X is finite, then u(·) is a utility function representing

a rational %. (by induction. Remember??)

2. Since X is finite, for any B ⊂ X with B 6= ∅ there exists x ∈ C (B) such that
u(x) ≥ u(y) for all y ∈ B...

3. ...remember that finiteness implied that we could order all alternatives in X ,
and assign a value.

4. Then, it means that x ∈ C ∗(B,%), i.e. x is chosen according to preference
relation in B.

5. Hence, C ∗(B,%) cannot be empty: C ∗(B,%) 6= ∅
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