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Recap: %, �, ∼

Definition 1. The strict preference relation � is

x � y ⇐⇒ x % y but not y % x

Definition 2. The indifference relation ∼ is

x ∼ y ⇐⇒ x % y and y % x

Recap: % rationality assumptions

% is rational if it is

• Complete: ∀x, y ∈ X, we have x % y or y % x or both;

• Transitive: ∀x, y, z ∈ X, if x % y and y % z, then x % z.

Recap: % and utility function u(·)

Definition 3. A function u : X 7→ R is a utility function representing % if

∀x, y ∈ X : x % y ⇐⇒ u(x) ≥ u(y)

1. MWG, Exercise 1.B.1 + 1.B.2: properties of %

Prove that if % is rational (complete and transitive), then

1. � is both irreflexive (x � x never holds) and transitive (if x � y and y � z, then x � z);

2. ∼ is reflexive (x ∼ x, ∀x), transitive (if x ∼ y and y ∼ z, then x ∼ z) and symmetric (if x ∼ y then
y ∼ x);

3. if x � y % z then x � z.

Solution: property 3 first

Proof. Property 3: if x � y % z then x � z

1. By definition, x � y means that x % y but not y % x;

2. then, x � y % z means x % y % z;

3. for transitivity (assumed), this means that x % z.

4. Now, let’s suppose that z % x. Since y % z, by transitivity we’d have y % x

5. but this is a contradiction, since we had in the beginning that x � y.

6. So, we have x % z but we cannot have z % x: this means that x � z
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Solution: property 1

Proof. Property 1: � is irreflexive and transitive

1. Irreflexivity. Use completeness: x % y, ∀x, y ∈ X:

2. hence, it must hold also for x % x, ∀x ∈ X;

3. this means that in no case there can be x � x.

4. Transitivity. Suppose x � y and y � z:

5. this means that at least x � y % z.

6. But we have proved before that this means x � z.

Solution: property 2

Proof. Property 2: ∼ is reflexive, transitive and symmetric

1. Reflexivity. By completeness, x % x, ∀x ∈ X:

2. this implies also that x ∼ x, ∀x ∈ X, by definition of ∼.

3. Transitivity. Suppose x ∼ y and y ∼ z:

4. by the definition of ∼, this means that all of these hold:

5. x % y, y % x, y % z, z % y.

6. By transitivity of %, this implies both x % z and z % x: hence x ∼ z.

7. Symmetry. Suppose x ∼ y: by definition, then x % y and y % x.

8. But the latter is also the definition of y ∼ x, if you look it the other way around.

9. hence, x ∼ y implies y ∼ x.

2. MWG 1.B.3 + 1.B.4.: % and u(·)

• Show that if f : R 7→ R is a strictly increasing function and u : X 7→ R is a utility function
representing the preference relation %, then the function v : X 7→ R defined by v(x) = f (u(x)) is
also a utility function representing %;

• Consider a preference relation % and a function u : X 7→ R. Show that if u(x) = u(y) implies
x ∼ y and if u(x) > u(y) implies x � y then u(·) is a utility function representing %.

Solution: strictly increasing function, intuition

• We will prove that a utility function associated with % is ordinal and not cardinal in nature.

• This is important: among other things, it implies that it is impossible to make interpersonal utility
comparisons directly.

• Note the definition of strictly increasing function:

Definition 4. A function f (x) is said to be strictly increasing over an interval I if f (b) > f (a) for all
b > a, when a, b ∈ I.

Example 5. Functions that are strictly increasing over their whole domain are among others all positive
straight lines (y = ax, a > 0) and positive exponentials (y = ax, a > 0); other functions can be increasing
over a part of their domain, as parabola (y = x2, for x > 0).

• Tip: a strictly increasing function on interval I has its derivative positive on I.
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Solution: strictly increasing functions, plots

Solution: strictly increasing function, proof

Proof. A strictly increasing transformation of a utility function is still a utility function

1. Let’s take x, y ∈ X. Since u(·) represents %, by definition:

2. if x % y then u(x) ≥ u(y).

3. since f (·) is strictly increasing, applying f (·) to u(·) does not change order, but only magnitude;

4. hence, f (u(x)) ≥ f (u(y)), i.e. v(x) ≥ v(y) when x % y:

5. hence, v(·) is a utility function representing %.

Solution: u(·), � and ∼.

Proof. if x % y, then u(x) ≥ u(y)

1. Suppose x % y.

2. if at this we add y % x, then x ∼ y and u(x) = u(y).

3. if instead we don’t have y % x, then x � y and u(x) > u(y).

4. hence, if x % y, then u(x) ≥ u(y)

Proof. if u(x) ≥ u(y), then x % y

1. Suppose u(x) ≥ u(y).

2. if at this we add u(x) = u(y), then x ∼ y.

3. if instead we add u(x) > u(y), then x � y.

4. hence, if u(x) ≥ u(y), then x % y.
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3. MWG 1.B.5: % and u(·), II

Show that if X is finite and % is a rational preference relation on X, then there is a utility function
u : X 7→ R that represents %.

Solution: intuition

• Since X is finite, the set of pairwise combination of elements of X is finite too;

• Since % is rational (hence complete and transitive):

– it defines a preference over all of the finite set of pairs;

– it excludes contradictory cycles of preferences.

• Hence, intuitively it is possible to rank all x, y ∈ X according to %;

• it must then be possible to build a utility function with such a complete ranking using ≥.

Solution: proving by induction

• A proof by induction is done by showing that something is true for n = 1 and then for n + 1;

• it then follows that it must be true for all n up to N.

• Proof by induction is used in the set of natural numbers N.

• More formally, for any proposition P(n) about positive integers:

• Prove that P(1) is true (base case);

• Prove that for each k ≥ 1, if P(k) is true, then P(k + 1) is true (inductive step).

Example 6. Consider a set of domino tiles. If domino tile n falls, tile n + 1 will fall. If we prove that tile
1 has fallen, then we can conclude that all tiles will fall.

Solution: proof, x � y

Proof. if X is finite, then there exists a u(·) representing %: no indifference

1. Start considering that no two items are indifferent, i.e. x � y, ∀x, y ∈ X;

2. Let’s prove by induction that in such a setting there exists a u(·) representing %.

3. Base case: if N = 1 there is nothing to prove.

4. Inductive step: Let’s suppose the claim is true for N − 1, and let’s prove it is still ture for N.

1. Let’s take X = {x1, x2, . . . , xN−1, xN}.

2. By hypothesis, there exists a u(·) on % defined up to xN−1.

3. Let’s order the x: let’s assume u(x1) > u(x2) > · · · > u(xN−1).

4. Since we have assumed no indifference, the above ranking means exclusively:
∀i < N, xN � xi

∀i < N, xi � xN

∃i < N and j < N s.t. xi � xN � xj
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Solution: proof, x � y continued

Proof. ...continued
In all the three cases above we can find a value of u(·) that is consistent:

1. In Case 1, we can take u(N) > u(x1);

2. In Case 2, we can take u(N) < u(xN − 1);

3. in Case 3:

• Define two intervals I = {i ∈ (1 . . . N) : xi � xN} and J = {j ∈ (1 . . . N) : xN � xj};
• I and J are disjoint intervals on N by our hypotheses;

• then if i∗ = max I, i∗ + 1 = min J.

• We can then take u(xN) to lie in the interval (u(i∗), u(i∗ + 1)).

Hence, in all of three cases an utility function can be built.

Recap: W.A.R.P., %∗

Definition 7 (WARP). A choice structure (B, C(·)) satisfies the weak axiom if for some B ∈ B with
x, y ∈ B we have x ∈ C(B), then for any B′ ∈ B with x, y ∈ B′, if we have y ∈ C(B′) we must also have
x ∈ C(B′)

• Which is indeed a minimal consistency requirement. Note that completeness and transitivity are
not required.

Definition 8 (Revealed preference relation %∗). Given a choice structure (B, C(·)), the revealed prefer-
ence relation %∗ is defined as:
x %∗ y ⇐⇒ there is some B ∈ B such that x, y ∈ B and x ∈ C(B).

• Which is just ’attaching a preference relationship’ to choices

• Note again that nor completeness nor transitivity are implied. It is just descriptive.

Recap: Rationalizability

Rational preferences % ⇒ W.A.R.P. satisfied X always

W.A.R.P. satisfied ⇒ Rational preferences % × not always

Definition 9 (Rationalizability). Given a choice structure (B, C(·)), the rational preference relation %
rationalizes C(·) relative to B if C(B) = C∗(B,%) for all B ∈ B. In other words, % generates the choice
structure (B, C(·)).

• the W.A.R.P. is a necessary but not sufficient condition for rationalizability.

• if B includes all subsets of X of up to three elements, then it is also sufficient:

• intuitively, the three-members property implies transitivity...

4. Exercise on W.A.R.P.

Consider a choice problem with choice set X = {x, y, z}. Consider the following choice structures:

• (B′, C(·)), in which B′ = {{x, y}, {y, z}, {x, z}, {x}, {y}, {z}} and C({x, y}) = {x}, C({y, z}) =
{y}, C({x, z}) = {z}, C({x}) = {x}, C({y}) = {y}, C({z}) = {z}.

• (B′′, C(·)), in which B′′ = {{x, y, z}, {x, y}, {y, z}, {x, z}, {x}, {y}, {z}} and C({x, y, z}) = {x},
C({x, y}) = {x}, C({y, z}) = {z}, C({x, z}) = {z}, C({x}) = {x}, C({y}) = {y}, C({z}) =
{z}.
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• (B′′′, C(·)), in which B′′′ = {{x, y, z}, {x, y}, {y, z}, {x, z}, {x}, {y}, {z}} and C({x, y, z}) = {x},
C({x, y}) = {x}, C({y, z}) = {y}, C({x, z}) = {x}, C({x}) = {x}, C({y}) = {y}, C({z}) =
{z}.

For every choice structure say if the WARP is satisfied and if it exists a rational preference relation %
that rationalizes C(·) relative to its B. If such a rationalization is possible, write it down. Comment on
your results.

Solution: (B′, C(·))

The choice structure can be summarised in these three relations:

• C({x, y}) = {x} reveals x %∗ y;

• C({y, z}) = {y} reveals y %∗ z

• C({x, z}) = {z} reveals z %∗ x

1. W.A.R.P. is trivially satisfied

• the same couple never appears more than once in different budgets;

• moreover, B′ does not include all budgets up to three elements.

• %∗ revealed preference relation is not necessarily transitive

2. B′ is NOT rationalizable:

• C({x, y}) = {x} is rationalised by x � y;

• C({y, z}) = {y} is rationalised by y � z;

• C({x, z}) = {z} is rationalised by z � x.

• It is not transitive, hence (B′, C(·)) is not rationalisable.

Solution: (B′′, C(·))

The choice structure can be summarised in these relations:

• C({x, y, z}) = {x} reveals x %∗ y and x %∗ z

• C({x, y}) = {x} reveals x %∗ y;

• C({y, z}) = {y} reveals y %∗ z;

• C({x, z}) = {z} reveals z %∗ x.

1. W.A.R.P. is NOT satisfied

• x %∗ z and z %∗ x hold at the same time;

• in this case it exists x, z ∈ B : C(B) = {x}, but there is also...

• ...a x, z ∈ B′ : z ∈ C(B′) but not x ∈ C(B′)

2. B′′ is NOT rationalisable:

• since in general if % is rational⇒ %∗ satisfies W.A.R.P.;

• then, by using the contrapositive, if A⇒ B, it must be true that ¬B⇒ ¬A

• Hence (B′′, C(·)) is not rationalisable
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Solution: (B′′′, C(·))

The choice structure can be summarised in these relations:

• C({x, y, z}) = {x} reveals x %∗ y and x %∗ z

• C({x, y}) = {x} reveals x %∗ y;

• C({y, z}) = {y} reveals y %∗ z;

• C({x, z}) = {x} reveals x %∗ z.

1. W.A.R.P. is satisfied

• there are no violations of the type x %∗ y and y %∗ x;

• moreover, B′′′ includes all budgets up to three elements.

2. B′′′ is rationalizable:

• C({x, y, z}) = {x} reveals x � y and x � z

• C({x, y}) = {x} reveals x � y;

• C({y, z}) = {y} reveals y � z;

• C({x, z}) = {x} reveals x � z.

• Hence x � y � z is complete and transitive and rationalises (B′′′, C(·))

5. MWG 1.D.2: % and W.A.R.P.

Show that if X is finite, then any rational preference relation generates a nonempty choice rule; that is,
C(B) 6= ∅ for any B ⊂ X with B 6= ∅.

Solution

Proof. X finite⇒ C(B) 6= ∅

1. We proved earlier that if X is finite, then u(·) is a utility function representing a rational %. (by
induction. Remember??)

2. Since X is finite, for any B ⊂ X with B 6= ∅ there exists x ∈ C(B) such that u(x) ≥ u(y) for all
y ∈ B...

3. ...remember that finiteness implied that we could order all alternatives in X, and assign a value.

4. Then, it means that x ∈ C∗(B,%), i.e. x is chosen according to preference relation in B.

5. Hence, C∗(B,%) cannot be empty: C∗(B,%) 6= ∅
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