

Games and Strategy TA 6

Bargaining cont'd



Paolo Crosetto

LUISS
Libera Università degli Studi Sociali Guido Carli
pcrosetto@luiss.it

October 28, 2010

Recap: bargaining

A bargaining problem between two players is composed of:

1. A set of the Bernoulli utilities over feasible alternatives

$$\mathcal{U} = \{(v_1, v_2) : u_1(x) = v_1, u_2(x) = v_2, \forall x \in X\}$$

2. A disagreement outcome (status quo, $(0, 0)$, or worse), $d = (u_1(d), u_2(d))$

We need the set \mathcal{U} to have the following properties

- $d \in \mathcal{U}$;
- $\exists(v_1, v_2)$ such that $v_1 > d_1, v_2 > d_2$
- \mathcal{U} convex
- \mathcal{U} compact, i.e. bounded and closed.

A Bargaining problem is a set (\mathcal{U}, d) ; a solution is $f : (\mathcal{U}, d) \mapsto \mathbb{R}^2$

Nash Axioms

Nash proposed the following four axioms:

PAR: The solution should be Pareto-efficient

SYM: If the problem (players, \mathcal{U} , d) is symmetric, so should be the solution;

INV: The problem is invariant to linear transformations of the utility functions

IIA: If the solution in a large \mathcal{U}' is within a subset $U \subset U'$, then the same solution holds for \mathcal{U} .

Nash Solution

Nash showed that only one f satisfies his four axioms:

The solution will be the amount that maximises the product of the difference between earnings and the disagreement outcome; that is

$$f^N(\mathcal{U}, d) = \arg \max(u_1(x_1) - d_1)(u_2(x_2) - d_2)$$

In the special case in which $(d_1, d_2) = (0, 0)$, and with two players, it boils down to

$$f^N(\mathcal{U}, d) = \arg \max(u_1(x_1))(u_2(x_2))$$

- Note that the utility functions are Bernoulli - i.e. preferences over lotteries over the set of feasible alternatives X ;
- This means that risk aversion plays a role.

Recap: risk aversion

- In the context of risky choices, i.e. of lotteries, player's attitudes to risk matter
- Let's imagine to have a binary choice between two lotteries
- Lottery A gives 100\$ for sure (with probability 1)
- Lottery B gives 200\$ with probability 0.5 and 0 with probability 0.5

1. Same expected value $EV = \sum_i p_i \cdot w_i$; $EV_A = EV_B = 100$
2. Different variances $VAR = \sum_i p_i \cdot (w_i - EV)^2$; $VAR_A = 0$, $VAR_B = 10000$

A risk-averse player, EV being equal, prefers the lottery with lower VAR

Utility diagram - *risk-neutral*

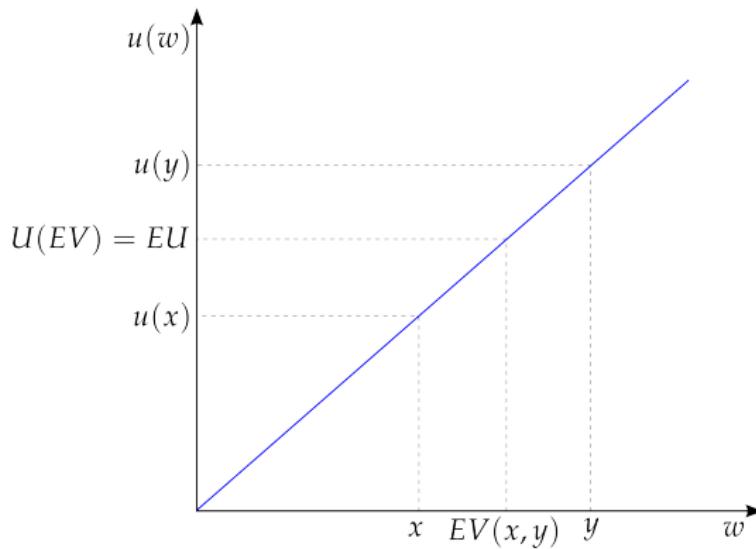


Figure: Risk-neutral: $U(EV) = EV(U)$

Utility diagram - risk-averse

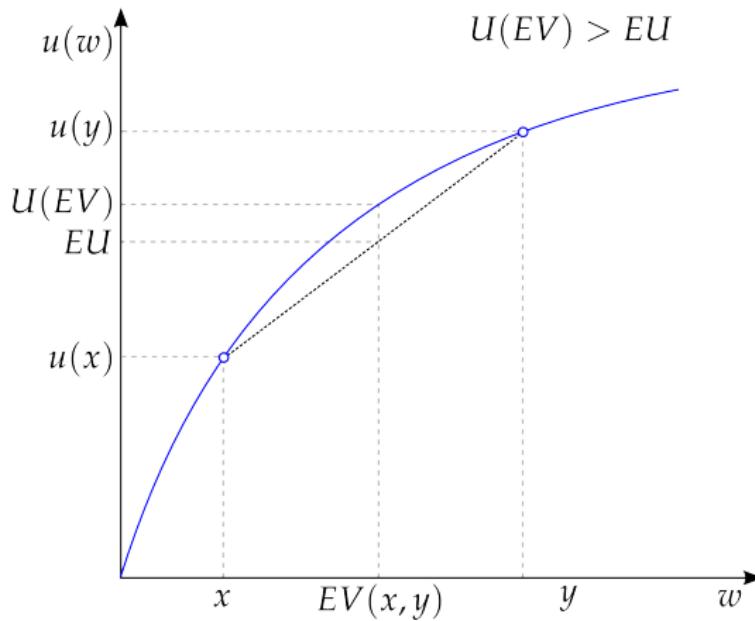
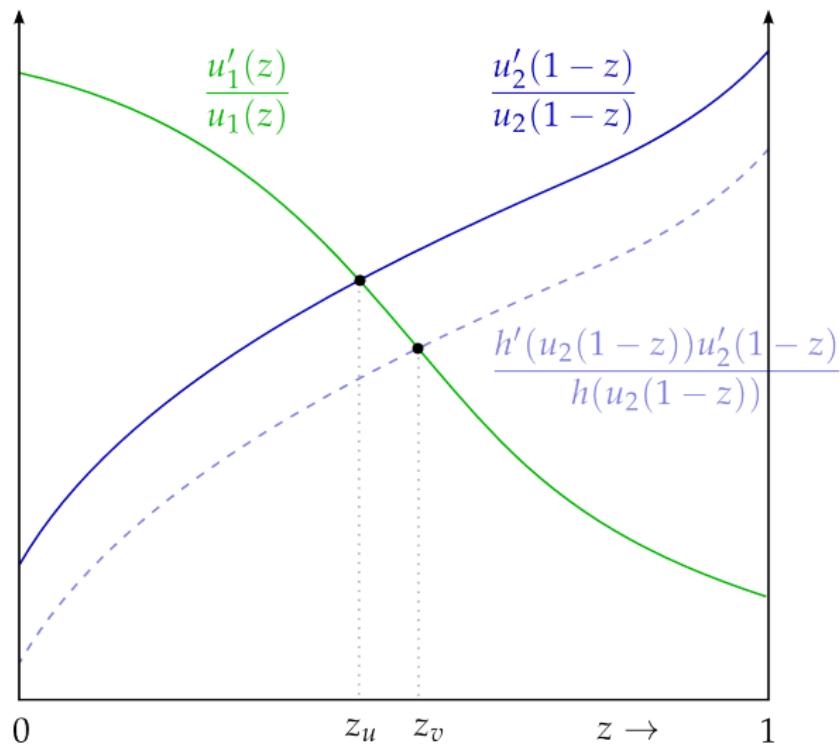


Figure: Risk-averse: $U(EV) > EV(U)$

Splitting a dollar with risk-aversion



Problems with IIA

- Intuitively weak
- Useful for some bargaining practices, but not for others
- Repeatedly refuted experimentally (Allais paradox)

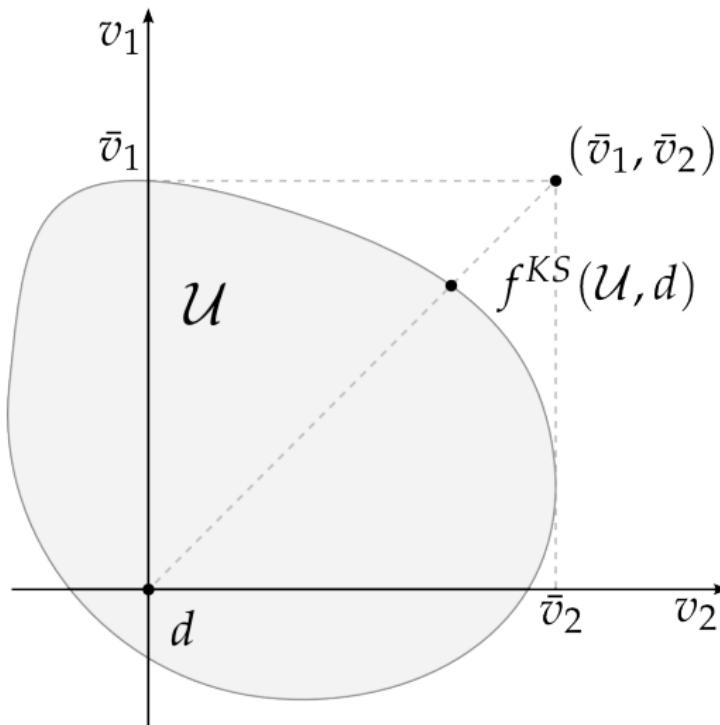
Allais paradox: the problem

Experiment 1				Experiment 2			
Lottery A		Lottery B		Lottery A		Lottery B	
Win	Prob	Win	Prob	Win	Prob	Win	Prob
1 million	89 %	1 million	89 %	0	89 %	0	89 %
1 million	11 %	0	1 %	1 million	11 %	0	1 %
		5 millions	10 %			5 millions	10 %

Allais paradox: solution

Experiment 1				Experiment 2			
Lottery A		Lottery B		Lottery A		Lottery B	
Win	Prob	Win	Prob	Win	Prob	Win	Prob
1 million	89 %	1 million	89 %	0	89 %	0	89 %
1 million	11 %	0	1 %	1 million	11 %	0	1 %
		5 millions	10 %			5 millions	10 %

KS solution: graphics



KS vs Nash problem

Find the Nash and the KS solutions of the bargaining problem (\mathcal{U}, d) in which \mathcal{U} is the triangle with corners at $(0,0)$, $(1,1)$ and $(2,0)$, and $d = (0,0)$.

Nash

Kalai-Smorodinsky

