

Nutritional policy design: insights from the lab

Session 1B: Tools of the trade – value elicitation

Paolo Crosetto

UniMi, Nov 20th, 2025

How do we elicit value from subjects?

We sometimes need to know *how much people value stuff*. "Stuff" here can be products, policy options, their freedom, control over their data...

- value is the bedrock of demand;
- different value across people, space and time is the reason for trade;
- different values across options drives firms decisions
- value for policy options drives policy decisions

A first experiment: **value = price?**

A simple Cola experiment

How much are you willing to pay for a coke can?

A simple Cola experiment

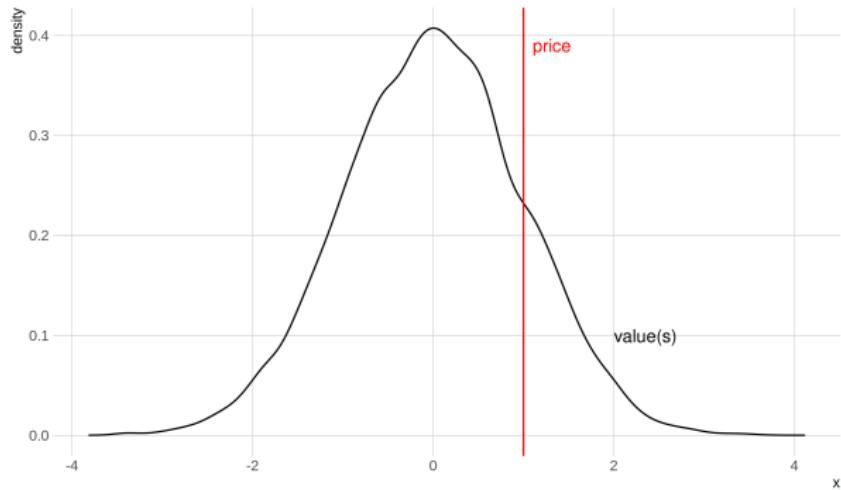
How much are you willing to pay for a coke can?

- Actual selling price will be drawn randomly $\sim U(0, 1)$.
- You are free to submit any offer – this is called **bid**
- If your price \geq the hidden price, you **buy** at the hidden price
- If your price \leq the hidden price, you do not buy.

- Write **your name** and **your willingness to pay** in the online form
- I'll reveal the price once *everyone has submitted their bid*

QR code

If self-declared \neq incentivized: hypothetical bias


- Usually self-declared price $>$ incentivized price
- A decision that results in *actual* consequences is called **incentive-compatible**
- i.e., real consequences + best strategy is to reveal your true preferences

If self-declared \neq incentivized: hypothetical bias

- Usually self-declared price $>$ incentivized price
- A decision that results in *actual* consequences is called **incentive-compatible**
- i.e., real consequences + best strategy is to reveal your true preferences

We go at great length to create incentive-compatible mechanisms

Value and price

Value \neq price

- Value belongs to consumers, price is set by firms given market conditions
- value can be higher, lower or equal to price
- it is the amount of satisfaction (=utility) you derive from a good
- it is (also) the personal amount of resources you wish to allocate to a good
- value is influenced by prices
- transactions occur if value $>$ price: then consumers have a surplus (value - price)

Value \neq price

- Value belongs to consumers, price is set by firms given market conditions
- value can be higher, lower or equal to price
- it is the amount of satisfaction (=utility) you derive from a good
- it is (also) the personal amount of resources you wish to allocate to a good
- value is influenced by prices
- transactions occur if value $>$ price: then consumers have a surplus (value - price)

Value as willingness to pay

We can operationalize value as willingness to pay (WTP)

- the amount of money a consumer wishes to allocate to a good **she does not yet have**
- Might depend on external conditions...
- ...good availability...
- ...information...
- ...existence of markets... etc.

People could lie about their value, for a host of reason

- to get a personal advantage: *strategic* lying
- to foster their personal agenda: *political* lying
- to please the experimenter: *demand effect*
- unconsciously: *hypothetical bias* [remember?]
- just plain *error* or *inattention*

People could lie about their value, for a host of reason

- to get a personal advantage: *strategic* lying
- to foster their personal agenda: *political* lying
- to please the experimenter: *demand effect*
- unconsciously: *hypothetical bias* [remember?]
- just plain *error* or *inattention*

we need incentive compatible mechanisms to elicit value

Random price mechanism: Becker-DeGroot-Marschak (BDM)

- subjects privately and simultaneously submit a sealed bid
- the selling price is drawn from a (known) uniform distribution on a (known) support
- if $\text{bid} \geq \text{price}$, then object is bought at price
- if $\text{bid} < \text{price}$, then no transaction
- same mechanism used on earlier to for the coke can

Random price mechanism: Becker-DeGroot-Marschak (BDM)

- subjects privately and simultaneously submit a sealed bid
- the selling price is drawn from a (known) uniform distribution on a (known) support
- if $\text{bid} \geq \text{price}$, then object is bought at price
- if $\text{bid} < \text{price}$, then no transaction
- same mechanism used on earlier to for the coke can

Q: why the random price?

BDM mechanism – optimal strategy

BDM is incentive compatible: optimal strategy is to bid own real value

- your value is v_i , your bid is b_i , and the random drawn price is p

BDM is incentive compatible: optimal strategy is to bid own real value

- your value is v_i , your bid is b_i , and the random drawn price is p
- if $b_i > v_i$, then:
 - if $b_i > p > v_i$, you **buy** at p that is higher than your value
- if $b_i < v_i$, then:
 - if $v_i > p > b_i$, you **do not** buy at a price that would have given you a gain
- hence by bidding $b_i \neq v_i$ you have either a **loss** or a **foregone gain**

BDM is incentive compatible: optimal strategy is to bid own real value

- your value is v_i , your bid is b_i , and the random drawn price is p
- if $b_i > v_i$, then:
 - if $b_i > p > v_i$, you **buy** at p that is higher than your value
- if $b_i < v_i$, then:
 - if $v_i > p > b_i$, you **do not** buy at a price that would have given you a gain
- hence by bidding $b_i \neq v_i$ you have either a **loss** or a **foregone gain**
- the best you can do is bidding $b_i = v_i$

Auctions

BDM is a very basic kind of auction: other auctions are used

- sealed-bid *vs.* oral auctions
- first *vs.* second (or N^{th}) price auctions
- ascending or descending auctions

Auctions

BDM is a very basic kind of auction: other auctions are used

- sealed-bid vs. oral auctions
- first vs. second (or N^{th}) price auctions
- ascending or descending auctions

N^{th} price auction

Sealed-bid 3rd price auction: a milka chocolate bar

- you each submit a sealed bid here.
- the **two** highest bids buy the object...
- ...at the **third** highest price.

QR code

Optimal strategy is to bid your value

- ...if you bid higher, you risk buying at too high a price
- ...if you bid lower, you risk not buying at a good price
- (same reasoning as for the BDM)

Optimal strategy is to bid your value

- ...if you bid higher, you risk buying at too high a price
- ...if you bid lower, you risk not buying at a good price
- (same reasoning as for the BDM)

- Q: would a **first** price sealed-bid auction be different?

Optimal strategy is to bid your value

- ...if you bid higher, you risk buying at too high a price
- ...if you bid lower, you risk not buying at a good price
- (same reasoning as for the BDM)

- Q: would a **first** price sealed-bid auction be different?
- Q: why would you prefer auction over BDM?

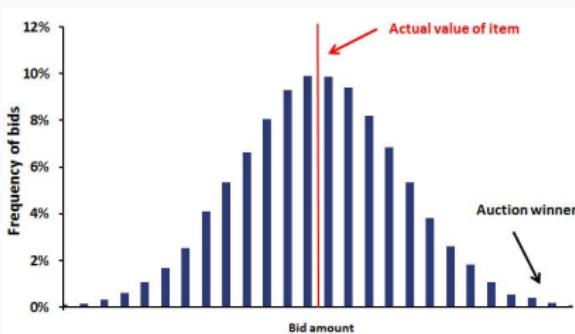
Common value auctions

First price auction for an oil extraction permit

- an oil field has a capacity estimated $\sim U(0, 50)$
- we set up a **first price** auction: the higher bid will get the extraction rights

- we do this for real: 1 barrel \Rightarrow 1 cent
- the oil well is worth between 0 and 50 cents
- **Now place your bids!**

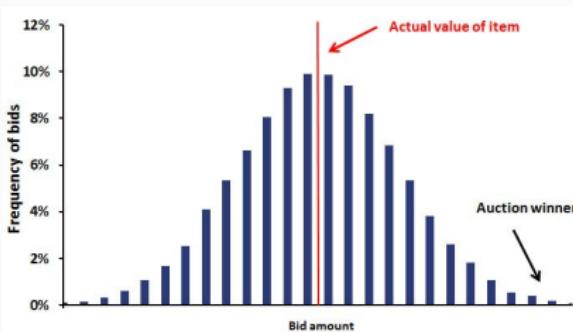
QR code



Winner's curse

- this is a first price auction with a *common* but *unknown* value
- each participant has a heterogeneous estimate of the oil yield
- the one that will win the auction is the one most likely to overestimate it
- and hence the one less likely to make profits!

Winner's curse


- this is a first price auction with a *common* but *unknown* value
- each participant has a heterogeneous estimate of the oil yield
- the one that will win the auction is the one most likely to overestimate it
- and hence the one less likely to make profits!

Winner's curse

Winner's curse

- this is a first price auction with a *common* but *unknown* value
- each participant has a heterogeneous estimate of the oil yield
- the one that will win the auction is the one most likely to overestimate it
- and hence the one less likely to make profits!

Value as Willingness to Accept (WTA)

We can also operationalize value as willingness to accept (WTA)

- the amount of money a consumer wishes to receive to part with a good **that she has**
- Might depend on external conditions...
- ...good availability...
- ...information...
- ...existence of markets... etc.

Goods for which you might elicit WTP

- private goods (soda, cookies, electricity supplies...)
- public goods (a new park, a new social service...)

WTP, WTA

Goods for which you might elicit WTP

- private goods (soda, cookies, electricity supplies...)
- public goods (a new park, a new social service...)

Goods for which you might elicit WTA

- private goods (selling your car, changing electricity provider...)
- public goods (expected environmental deterioration, a new development on an existing park...)

A simple experiment

- half of you receive salty crisps
- half of you receive sweet madeleines
- please indicate in a sealed bid:
 - for how much would you sell the good you own
 - for how much would you buy the good you do not own
- we will then randomly match you, and if prices match ($\text{bid} > \text{ask}$) the transaction is made
- according to the usual rules

QRcode

WTP vs. WTA: experiments

Students in every other seat were given university mugs. Then reported how much they would be willing to sell the mug for.

Students who did not get a mug reported the price they would be willing to pay to get one.

What happened?

- a) The students with mugs priced them higher.
- b) The students with no mugs priced them higher.
- c) Both sets of students priced them about the same

WTP vs. WTA: experiments

Students with the mugs
were willing to sell
them, on average, for

\$4.50

Students with no mugs
were willing to buy
them, on average, for

\$2.25

Kahneman, D. (UC Berkley), Knetsch, J. (Simon Fraser U), Thaler, R. (Cornell), 1990, Experimental tests of the endowment effect and the Coase theorem. *Journal of Political Economy*, 98(6), 1325-1348.

WTP vs. WTA: the endowment effect

this is the Endowment effect: you value a good more because it's yours

"Have you ever noticed that their stuff is shit and your shit is stuff?"

– George Carlin, A Place for My Stuff

In theory (on average, in large samples) $WTP = WTA$

- tastes differ, so some people might prefer X to Y and others Y to X
- but not *systematically* so [here you are ~ 16 , way too small]
- if the two goods are equally desirable, we should see \sim the same evaluations, and roughly an even number of transactions
- if desirability is asymmetric, we should see asymmetry in transaction, but still no systematic difference between the WTP of one group and the WTA of the other.

Why the endowment effect?

Loss aversion and reference dependence

- people feel losses more than equivalent gain
- (would accept to play a lottery in which you have 50-50 chances of losing 100 and gaining 120? and 100 and 100?)
- this is called *loss aversion*
- moreover, losses are not evaluated around zero, but around the *status quo*
- if you get a raise in your wage, you get used to it; and less money will be felt as a loss

Loss aversion and reference dependence

Mainly for this contribution Daniel Kahneman and Amos Tversky got the 2002 Nobel Prize in Economics!

More complex evaluation: a burger with fries

- we deal with a **tasty burger** with **fries side**.
- please write down somewhere your WTP for this meal now.
- no incentives this time, but let's pretend as if they were there.

Social value and social norms

Now imagine you want to elicit social norms on value

Now imagine you want to elicit social norms on value

- that is, **not** the individual value
- but the value that an individual *thinks* the *others* have
- is it possible to incentivize this?

Social norm elicitation

- we deal with a **tasty burger with fries side**.
- your task is to *guess* how much *the average bid of everyone in the room* is
- we will compute the **average** of all your guesses, and that is the target.
- the person that **gets nearest to the average** wins!

QRcode

A Beauty contest

SUNDAY MORNING, MAY 14, 1983

SAN ANTONIO EXPRESS

D 3

Here Are Ten More Winners in the Court of Honor Competition

2018年05月期 第1回定期会員総会

第六章 会议与谈判

卷之三

卷之三

PROBLEMS RELATED TO THE MACROSTRUCTURE

卷之三

11172

THIS WEEK'S WINNERS

Queen and Ladies-in-Waiting Will Be Announced at
a Dinner Night of May 26 When Entire Court
Will Be Guests of Honor.

卷之三十一

生物技术

June 26, 1947, Post, 24 Virginia St., Durhams, Mass.
Doris Elizabeth Hendon, 212 Faunton Ave., San Francisco, Calif.
John Edward Hickey, 1000 18th St., N.W., Washington, D.C.
Cecilie Wright, South County, R.I.
John Edward Kline, 1000 18th St., N.W., Washington, D.C.
Lila Rose Manganaro, 207 Avenue C, Brooklyn, N.Y.
John J. O'Farrell, 1200 N. Clark St., Chicago, Ill.
Hazel Mae Grindstaff, 220 S. 10th St., Philadelphia, Pa.
John Edward Kline, 1000 18th St., N.W., Washington, D.C.
Vida Dell, 2100 Carroll Ave., Chicago, Ill.

Beauty contest: why and optimal strategy

- beauty contest allows subjects to express beliefs over other subjects
- i.e. a proxy of the *social norm* (what I think others usually do \sim what I think ought to be done)
- the optimal strategy is to state one's true belief (see auctions or BDM)
- BC allow to assess public awareness and awareness of public awareness about a topic

**KEEP
CALM**

it's

**QUESTION
TIME**